
Visual Analysis of High DOF

Articulated Objects

with Application to Hand Tracking

James M. Rehg

April 1995

CMU-CS-95-138

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Submitted to the Dept. of Electrical and Computer Engineering

in partial ful�llment of the requirements for the

degree of Doctor of Philosophy.

Committee: Dr. Takeo Kanade, Chair

Dr. Jos�e Moura

Dr. Katsushi Ikeuchi, SCS

Dr. Andrew Witkin, SCS

This research was conducted at the Robotics Institute, Carnegie Mellon University,

and partially supported by the NASA George Marshall Space Flight Center (GMSFC),

Huntsville, Alabama 35812 through the Graduate Student Researchers Program (GSRP),

Grant No. NGT-50559. The views and conclusions contained in this document are those

of the author and should not be interpreted as representing the o�cial policies, either

expressed or implied, of NASA or the U.S. government.

c
 1995 James M. Rehg

Keywords: Model-Based Visual Tracking, Articulated and Nonrigid Ob-
ject Motion, Occlusions, Human Motion Analysis, Human-Computer Inter-

action, Gesture Recognition

Abstract

Measurement of human hand and body motion is an important task for

applications ranging from athletic performance analysis to advanced user-

interfaces. Commercial human motion sensors are invasive, requiring the

user to wear gloves or targets. This thesis addresses noninvasive real-time

3D tracking of human motion using sequences of ordinary video images. In

contrast to other sensors, video cameras are passive and inobtrusive, and

can easily be added to existing work environments. Other computer vi-

sion systems have demonstrated real-time tracking of a single rigid object
in six degrees-of-freedom (DOFs). Articulated objects like the hand present
three challenges to existing rigid-body tracking algorithms: a large number

of DOFs (27 for the hand), nonlinear kinematic constraints, and complex
self-occlusion e�ects. This thesis presents a novel tracking framework for
articulated objects that uses explicit kinematic models to overcome these
obstacles.

Kinematic models play two main roles in this work: they provide geomet-

ric constraints on image features and predict self-occlusions. A kinematic
model for hand tracking gives the 3D positions of the �ngers as a function
of the hand state, which consists of the pose of the palm and the �nger joint
angles. Image features for the hand consist of lines and points which are
obtained by projecting �nger phalanges and tips into the image plane. The
kinematic model provides a geometric constraint on the image plane posi-

tions of hand features as a function of the hand state. Tracking proceeds by
registering the projection of the hand model with measured image features
at a high frame rate.

Self occclusions are modeled by arranging the image features in overlap-

ping layers, ordered by their visibility to the camera. The layered repre-

sentation is generated automatically by the kinematic model and used to
constrain registration. This framework was implemented in a hand tracking

system called DigitEyes and tested in two sets of experiments. First, a hand
was tracked in real-time using two cameras and a 27 DOF model, and using

a single camera in a 3D mouse user-interface trial. Second, the occlusion

handling framework was tested o�-line on a motion sequence with signi�cant
self-occlusion. These results illustrate the e�ectiveness of explicit kinematic
models in 3D tracking and analysis of self-occluding motion.

Dedicated to Jim and Marci

Acknowledgments

I wish to thank my advisor, Dr. Takeo Kanade, for his support and tech-

nical advice during my graduate studies. My years in the Vision and Au-

tonomous Systems Center (VASC) were extremely enjoyable, and I'm grate-

ful to have had the opportunity to complete my thesis in such a marvelous

environment.

I was fortunate to interact closely with my committee members, Dr. Kat-

sushi Ikeuchi, Dr. Jos�e Moura, and Dr. Andrew Witkin at di�erent stages
of my thesis work. I am grateful to them for their helpful comments and
insight. I am especially grateful to Andy for introducing me to deformable

models and for making the resources of the graphics lab available for my use.

I want to thank Dr. Ingemar Cox for an enjoyable and productive intern-
ship at the NEC Research Institute in Princeton, NJ during the summer of
1991.

I would like to thank my parents, Jim and Marci, for the encouragement

and e�ort that made this dissertation possible. I want to thank my wife,
Dorothy, for her constant support and valuable technical insight.

I am grateful to Alberto Elfes for introducing me to computer vision and
robotics, and to Radu Jasinschi for his ideas and friendship. I have enjoyed
many interesting conversations with members of the VASC group and ECE
department over the years. In particular, I want to thank Sandra Ramos-

Thuel, Omead Amidi, Heung-Yeung Shum, Luc Robert, and Fabio Cozman
for their time.

Thanks to Omead Amidi and Yuji Mesaki for their help with the hardware
environment, and to Dr. David Sturman for kindly providing the postscript

�le for Fig. 2.4.

Jim Rehg
April 7, 1995

Contents

1 Introduction 1

1.1 Tracking with Kinematic Models : : : : : : : : : : : : : : : : 2

1.2 Tracking Self-Occluding Objects with Layered Templates : : : 4

1.3 Hand Tracking Experiments : : : : : : : : : : : : : : : : : : : 5

1.4 Contributions : 7

2 Tracking with Kinematic Models 9

2.1 The Role of Kinematics in Visual Tracking : : : : : : : : : : : 9

2.2 Kinematic Modeling of Articulated Objects : : : : : : : : : : : 13

2.2.1 Coordinate Frames and Transformations : : : : : : : : 14

2.2.2 A Kinematic Hand Model : : : : : : : : : : : : : : : : 18

2.2.3 Kinematic Model Calibration and Errors : : : : : : : : 24

2.3 Camera Modeling and Calibration : : : : : : : : : : : : : : : : 26

2.4 Tracking Through Template Registration : : : : : : : : : : : : 28

2.4.1 Kinematic Deformations of Templates : : : : : : : : : : 29

2.4.2 SSD Residual Error Function : : : : : : : : : : : : : : 31

2.4.3 State Estimation by SSD Residual Minimization : : : : 32

2.4.4 Deformation Function Jacobians : : : : : : : : : : : : : 34

2.5 Tracking Through Feature Alignment : : : : : : : : : : : : : : 35

2.5.1 Line Feature Residual and Jacobian : : : : : : : : : : : 36

2.5.2 Point Feature Residual and Jacobian : : : : : : : : : : 37

2.5.3 State Estimation by Feature Residual Minimization : : 38

2.5.4 Visual Tracking and Kinematic Singularities : : : : : : 39

2.5.5 Tracking with Multiple Cameras : : : : : : : : : : : : : 40

2.6 Discussion : 41

v

3 Tracking Self-Occluding Objects with Layered Templates 43

3.1 Model-based Occlusion Analysis : : : : : : : : : : : : : : : : : 45

3.2 Visibility Orders for Planar Kinematic Chains : : : : : : : : : 48

3.2.1 Binary Occlusion Relations : : : : : : : : : : : : : : : 48

3.2.2 Occlusion Relations for Revolute Joints : : : : : : : : : 49

3.2.3 Visibility Orders for Hand Templates : : : : : : : : : : 52

3.3 Estimation with Layered Templates : : : : : : : : : : : : : : : 55

3.3.1 Window Functions : 56

3.3.2 Minimization of Layered Template Error : : : : : : : : 59

3.3.3 Residual Jacobian Computation : : : : : : : : : : : : : 60

3.3.4 Algorithms for Image Segmentation : : : : : : : : : : : 63

3.4 The Existence of Visibility Orders : : : : : : : : : : : : : : : : 64

3.4.1 Existence Conditions for Occlusion Relations : : : : : : 64

3.4.2 Visibility Ordering and Occlusion Graphs : : : : : : : : 66

3.4.3 Occlusion Events and Global Models : : : : : : : : : : 69

3.5 Discussion : 71

4 Hand Tracking Experiments 73

4.1 Experimental Objectives : 74

4.2 Software Architecture : 75

4.3 Real-Time Hand Tracking : 78

4.3.1 The DigitEyes System : : : : : : : : : : : : : : : : : : 78

4.3.2 Algorithm Summary : : : : : : : : : : : : : : : : : : : 83

4.3.3 Whole Hand Tracking : : : : : : : : : : : : : : : : : : 85

4.3.4 3D Mouse User-Interface : : : : : : : : : : : : : : : : : 91

4.3.5 Evaluation of 3D Mouse Performance : : : : : : : : : : 94

4.4 Tracking Self-Occluding Hand Motion : : : : : : : : : : : : : : 98

4.4.1 Algorithm Summary : : : : : : : : : : : : : : : : : : : 99

4.4.2 Two Finger Tracking Results : : : : : : : : : : : : : : 101

4.5 Summary : 105

5 Previous Work 107

5.1 3D Motion Analysis : 107

5.2 2D Gesture Analysis : 109

5.3 Application-Speci�c Human Sensing : : : : : : : : : : : : : : : 110

5.4 Layered Representations : 111

vi

6 Conclusion and Future Work 113

A Whole Hand DH Model 115

vii

viii

List of Figures

1.1 (a) Hand image with projection of 3D kinematic model over-

laid in black and detected line and point features shown in
white, and (b) 3D view of the hand model which is registered
to the image in (a). : 3

1.2 Two �nger self-occlusion experiment from Chpt. 4. (a) Hand
image with model overlays, (b) model state estimated from
image (a). : 5

1.3 A sample graphical environment for a 3D mouse. The 3D
cursor is at the tip of the \mouse pole", which sits atop the
ground plane. : 6

2.1 (a) Stick drawing of image features and model for the �rst
�nger in Fig. 1.2 and (b) two models with di�erent kinematics
that produce the same image. : : : : : : : : : : : : : : : : : : 10

2.2 Use of an additional stereo image to reconstruct the 3D pose
of the �nger depicted in Fig. 2.1 (a). : : : : : : : : : : : : : : 12

2.3 Illustration of the basic coordinate frames in the kinematic
model. : 15

2.4 Hand skeleton and joints. This is Fig. 1 from [61], used with
permission. : 18

2.5 Kinematic models, illustrated for fourth �nger and thumb.

The arrows illustrate the joint axes for each link in the chain. 19

2.6 A �nger tip template is mapped into the image by a defor-

mation function. Its template plane positions it in shape co-
ordinates. Only the template pixels, enclosed by the white

boundary contour, are mapped to the image. : : : : : : : : : : 29

ix

2.7 Features used in hand tracking are illustrated for �nger links 1

and 2, and the tip. Each in�nite line feature is the projection

of the �nger link central axis. : : : : : : : : : : : : : : : : : : 36

3.1 Three snapshots from a motion sequence, illustrating the dif-

ferent occlusion relations between the �rst and second �ngers

of the hand. : 44

3.2 The partition of the rotation space (unit circle) into regions

with an invariant visibility order. This is a top view of the

scene in Fig. 3.1, with the camera located on the right. �

gives the rotation of the hand relative to the camera. : : : : : 46

3.3 Occlusion properties of two links connected by a revolute joint. 50

3.4 Types of intersections between two planar kinematic chains.

In (a), chains are con�ned to separate sides of the dividing
line at which their planes intersect. In (b) one chain crosses
the line, and in (c) they both do. The viewpoint relative to
the dividing line determines the visibility order. (d) shows the
ordering test from (c) in the chain 2 plane. : : : : : : : : : : : 54

3.5 Image composition example for two 1D templates. Occlusion
is modeled by the unit window function shown on the right. : 56

3.6 A template and its associated unit window function are illus-

trated for the �nger tip. : 58

3.7 Tree of window functions generated by a set of templates,
I1; I2; : : : ; In, in visibility order. Ib is the background template. 59

3.8 (a) A pixelw0 in the interior of template Ij and the associated

window tree, and (b) the same for a boundary pixel. : : : : : : 61

3.9 Occlusion relations for 2D objects viewed by a 1D camera.

(a) Su�cient conditions for A � B, (b) geometric de�nition

of occlusion ambiguity, and (c) degenerate con�guration of two

planar objects in point contact. No nonzero bound on relative

translation can remove the occlusion ambiguity. : : : : : : : : 65

3.10 A collection of 2D rigid bodies under bounded translational
motion relative to a 1D camera. Each body can translate by

�X and �Y , as shown for body E. : : : : : : : : : : : : : : : 67

3.11 (a) Occlusion graph for the mechanism in Fig. 3.10, and (b)
the visibility order produced by sorting the graph. : : : : : : : 67

x

3.12 (a) A con�guration of three objects and (b) its associated

cyclic occlusion graph. : 68

3.13 (a) Two link mechanism in 2D, and (b) associated occlusion

meta-graph. : 70

4.1 Software architecture for tracking system. : : : : : : : : : : : 76

4.2 A single link tracker is shown along with its detected boundary

points. One slice through the �nger image of a �nger is also

depicted. Peaks in the derivative give the edge locations. : : : 79

4.3 The hardware architecture for the stereo version of the Dig-

itEyes hand tracking system. : : : : : : : : : : : : : : : : : : : 82

4.4 Experimental test bed for the DigitEyes system. : : : : : : : : 83

4.5 Three pairs of hand images from the continuous motion esti-

mate plotted in Figs. 4.7 and 4.8. Each stereo pair was ob-
tained automatically during tracking by storing every �ftieth
image set to disk. The samples correspond to frames 49, 99,
and 149. : 86

4.6 Estimated hand state for the image samples in Fig. 4.5, ren-

dered from the Camera 0 viewpoint (left) and a viewpoint
underneath the hand (right). : : : : : : : : : : : : : : : : : : : 87

4.7 Estimated palm rotation and translation for motion sequence
of entire hand. Qw-Qz are the quaternion components of ro-
tation, while Tx-Tz are the translation. The sequence lasted

20 seconds. : 89

4.8 Estimated joint angles for the �rst �nger and thumb. The
other three �ngers are similar to the �rst. Refer to Fig. 2.5 for
variable de�nitions. : 90

4.9 A sample graphical environment for a 3D mouse. The 3D

cursor is at the tip of the \mouse pole", which sits atop the
ground plane (in the foreground, at the right). The sphere

is an example of an object to be manipulated, and the line
drawn from the mouse to the sphere indicates its selection for

manipulation. : 91

xi

4.10 The hand model used in the 3D mouse application is illus-

trated for frame 200 in the motion sequence from Fig. 4.12.

The vertical line shows the height of the tip above the ground

plane. The input hand image (frame 200) demonstrates the

�nger motion used in extending the cursor height. : : : : : : : 93

4.11 Palm rotation and �nger joint angles for mouse pole hand

model depicted in Fig. 4.10. Joint angles for thumb and fourth

�nger, shown on right, are used as buttons. Note the \button

event" signaled by the thumb motion around frame 175. : : : 94

4.12 Translation states for mouse pole hand model are given on the
left. The Y axis motion is constrained to zero due to tabletop.
On the right are the mouse pole states, derived from the hand
states through scaling and a coordinate change. The sequence

events goes: 0-150 �nger raise/lower, 150-200 thumb actuation
only, 200-350 base translation only, 350-500 combined 3 DOF
motion. : 95

4.13 The mouse pole cursor at six positions during the motion se-
quence of Fig. 4.11. The pole is the vertical line with a hori-

zontal shadow, and is the only thing moving in the sequence.
Samples were taken at frames 0, 30, 75, 260, 300, and 370
(chosen to illustrate the range of motion). : : : : : : : : : : : 96

4.14 Sample input images and associated state estimates for frames
0, 13, 30, and 75 in the motion sequence. The two �nger

hand model is rendered with respect to the calibrated camera
model using the estimated state. The overlays show the tem-
plate boundaries and projection of cylinder center axes. These

frames were selected for their representative self-occlusions. : : 102
4.15 Estimated planar �nger motions for two �nger model. : : : : : 103

4.16 Estimated translation state of two �nger model. : : : : : : : : 104

xii

xiii

xiv

Chapter 1

Introduction

Tracking the motion of hands and bodies in three dimensions (3D) is an

important task for applications in computer graphics, athletic performance

analysis, and user-interfaces. Commercial humanmotion sensors are invasive,

requiring the user to wear gloves or targets [74, 37]. For example, current

motion capture systems work by recording the 3D trajectories of magnetic

trackers or optical targets attached to the user's hands and limbs. These

trajectories are used in computer graphics applications to imbue animated

characters with realistic motion [54]. In other examples, various glove-based

sensors for palm and �nger motion have been used to interpret sign lan-

guage [17] and control 3D CAD models [9]. In all of these cases, the use-

fulness and convenience of the sensor is limited by the need to wear clumsy,

bulky devices, often tethered to an external computer.

This thesis addresses the noninvasive real-time tracking of human motion

using sequences of ordinary video images. In contrast to other sensors, video

cameras are passive and inobtrusive, and can easily be added to existing work

environments. Other computer vision systems have demonstrated real-time

tracking of a single rigid object in six degrees of freedom (DOFs) [20, 35].

Articulated objects like human �gures and hands present three di�culties

for these existing algorithms: the large number of DOFs required to describe

1

2 CHAPTER 1. INTRODUCTION

their motion, nonlinearities in the mapping from the DOFs to the image

motion, and the presence of complex occlusion e�ects, when one part of the

body blocks the camera's view of another. This thesis explores the use of

explicit kinematic models in a local tracking approach to overcome these

di�culties. It describes a tracking framework for general articulated objects

and presents experimental results for 3D hand tracking from natural image

sequences.

1.1 Tracking with Kinematic Models

The kinematics of an articulated object provide the most fundamental con-

straint on its motion. Chapter 2 presents a general model-based framework

for tracking with kinematic constraints; this section outlines its application

to hand tracking. In the case of the hand, motion of the �ngers and palm

in 3D is constrained by the skeleton. The relationship between these skele-

tal constraints and a hand image is illustrated in Fig. 1.1(a). The black

overlay shows the projection of a 3D kinematic hand model, illustrated in

Fig. 1.1(b), into the image plane. The �nger phalanges (links) are drawn as a

set of black \T" shapes, connected together at the knuckles. Each phalange

is represented by a cylinder, and each T shows the radius and axis of the

cylinder's projection into the image. When the model has been registered to

the image correctly, as in the �gure, the projected cylinders are aligned with

the �ngers.

Local tracking consists of a series of registration problems in which the

con�guration of the 3D hand model is adjusted so that its projection is

aligned with the current image. At the start of tracking, the image and the

model are registered. For each subsequent image in the motion sequence,

small corrections are made to the state of the hand that minimize the reg-

istration error. The state vector for the hand contains the pose of the palm

and the �nger joint angles. The registration error is described by a residual

1.1. TRACKING WITH KINEMATIC MODELS 3

function, which is minimized by the state correction in each frame. This

thesis explores two types of residual functions: Sum of Squared Di�erences

(SSD) and geometric feature residuals. The SSD residual measures the inten-

sity di�erences between the image and a template model for each body in the

articulated object. A collection of templates can represent a wide variety of

link shapes. Furthermore, since templates explicitly describe the region each

link occupies in the image, they are useful in tracking self-occluding objects,

as Chpt. 3 describes.

Figure 1.1: (a) Hand image with projection of 3D kinematic model overlaid
in black and detected line and point features shown in white, and (b) 3D
view of the hand model which is registered to the image in (a).

Images of hands and bodies can also be described by a collection of line

and point features, as the \image skeleton" shown in Fig. 1.1 illustrates.

In this example, pairs of lines and point features, drawn in white, mark

the edges of the �nger phalanges and the �nger tip centers. The geometric

feature residual used in this case measures the distance between the pro-

jected 3D model (the black overlay) and the measured line and point features

(the white overlay.) This feature residual approximates the SSD residual for

roughly cylindrical objects like �nger phalanges and limbs. A simple, e�-

4 CHAPTER 1. INTRODUCTION

cient algorithm for detecting the geometric features is described in Chpt. 4.

It forms the basis for the real-time tracking experiments described there.

The residual error for each image is minimized using a gradient-based ap-

proach. The kinematic Jacobian for the articulated object is a key component

of the residual gradient. It plays a role in articulated object tracking that is

similar to its use in robot control. This duality is exploited in Sec. 2.5.4 in

the study of kinematic singularities, which arise when certain states have no

instantaneous e�ect on the image features. The geometric feature residual

can be used to identify these singular cases, because it provides a closed-form

expression for registration error as a function of the state. A standard tech-

nique for stabilizing rigid body trackers is shown to be e�ective in dealing

with these singularities.

1.2 Tracking Self-Occluding Objects with Lay-

ered Templates

When the motion of an object like the hand is sampled at a high frame rate,

the occlusion relations between its bodies hardly ever change. When they

do, the change can be predicted from the kinematic model. This observa-

tion is exploited in Chpt. 3 to remove the estimation of occlusion from the

tracking problem, leaving only the registration of partly occluded templates.

The result is a layered representation of self-occlusion that is dynamically

updated by the kinematic model. A set of rules for hand template ordering

are developed through an analysis of planar kinematic chains.

The registration framework from Chpt. 2 is extended to the overlapping

template case through the introduction of window functions that mask o�

the contributions of occluded templates. The presence of window functions

complicates the derivation of the residual Jacobian. However, the structure

of the layered templates can be expressed in a window tree, and analyzed to

6 CHAPTER 1. INTRODUCTION

Figure 1.3: A sample graphical environment for a 3D mouse. The 3D cursor

is at the tip of the \mouse pole", which sits atop the ground plane.

plication, to test its practical usefulness as an input device. The resulting

non-invasive interface gives the user control over a 3D cursor in a graphical

environment, using images from a single calibrated camera. Figure 1.3 shows

sample output from the interface.

In the �nal experiment, described in Sec. 4.4, an o�-line version of the

DigitEyes system was used to test the self-occlusion framework of Chpt. 3. A

75 frame image sequence of two �ngers undergoing signi�cant self-occlusion

was successfully tracked.

1.4. CONTRIBUTIONS 7

1.4 Contributions

This dissertation makes �ve main contributions:

1. Analysis of the application of kinematic models to visual tracking of

articulated objects, addressing Jacobian singularities and sensitivity, as

well as techniques for e�cient Jacobian computation.

2. The �rst experimental demonstration of real-time tracking (at speeds of

up to 10 Hz) of a high-DOF articulated object (a 27 DOF hand model),

using both monocular and stereo image sequences of unadorned, un-

marked hands [46, 48].

3. Application of the DigitEyes sensor to the 3D mouse user-interface

problem, demonstrating the feasibility of 3D human sensing at reason-

able accuracy levels using currently-available hardware [47].

4. The identi�cation of a local ordering invariant for self-occluding objects,

an analysis of its existence conditions, and the design of a tracking

algorithm for self-occluding motion [49].

5. The �rst experimental demonstration of nontrivial 3D articulated ob-

ject tracking in the presence of self-occlusion [50].

These results extend previous techniques in computer vision for rigid body

tracking and demonstrate the feasibility of vision-based 3D human motion

sensing.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Tracking with Kinematic

Models

The motion of an articulated object like the hand is determined by its skele-

ton. A camera can only observe the skeleton indirectly, however, through its

e�ect on the skin. Skin and clothing deform during hand and body motion,

producing nonrigid e�ects in an image sequence. The magnitude of these

nonrigid components is small, however, compared to the e�ects of rigid, ar-

ticulated body motion. This dissertation treats nonrigidity as unmodeled

noise in the measurements of rigid, articulated objects. Experimental hand

tracking results, presented in Chpt. 4, demonstrate the e�cacy of this as-

sumption. They are corroborated by experimental results for body track-

ing [23, 29], which make a similar assumption.

2.1 The Role of Kinematics in Visual Tracking

The use of kinematicmodels is vital for 3D tracking. As an example, consider

the problem of estimating the pose of the �rst �nger in the image of Fig. 1.2.

The true �nger pose and its projection into the image are shown with a

line drawing in Fig. 2.1 (a). The line drawing is a useful abstraction of the

geometric information contained in the image. For simplicity, assume that

9

10 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

x

y

z

Image Plane

Finger Plane

a

a’

b

b’

c

c’

d

d’

(a)

d’

x

y

z

Image Plane

Finger Plane

a

a’

b

b’

c

c’

d

â

b̂
ĉ

d̂

(b)

Sample Plane

Figure 2.1: (a) Stick drawing of image features and model for the �rst �nger
in Fig. 1.2 and (b) two models with di�erent kinematics that produce the

same image.

the �nger lies in a plane in space, and the camera model is orthographic.1

From the geometry of �gure (a), it is clearly impossible to determine the 3D

pose of links ab, bc, and cd from the image points fa0;b0; c0;d0g without a

kinematic model. In fact, for any sample plane in 3D there exists a �nger

con�guration that produces the given image. Fig. 2.1 (b) gives one example.

A unique solution is possible only when the link lengths are known. Only in

this case is the orientation of a link along the camera axis determined by its

projection in the image.

The example in Fig. 2.1 also illustrates the di�erence between errors in

registration and errors in 3D pose (state) estimates. Registration refers to

the alignment between an image and the image plane projection of a 3D

model. As Fig. 2.1 (b) illustrates, it is easy to achieve zero registration error

without a kinematic model for any sample plane position, by aligning the

projections of fâ; b̂; ĉ; d̂g with fa0;b0; c0;d0g. The corresponding pose error

can be arbitrarily large, however, as the sample plane rotates away from the

1In orthographic projection, all rays from the scene to the camera are parallel.

2.1. THE ROLE OF KINEMATICS IN VISUAL TRACKING 11

true �nger plane. Now suppose that a kinematic model is available, as in

Fig. 2.1 (a), but that the model itself has some error. When the model errors

are small, the pose error will also be small. The registration error will be

nonzero in this case, as no con�guration of the incorrect model will match

the image exactly. A kinematic model makes it possible to extrapolate image

registration into three dimensions. The quality of this extrapolation depends

on the accuracy of the model.

There are two other sources of 3D pose information besides a kinematic

model: shading and stereo. The shading in an image of the hand varies with

its spatial orientation. These intensity changes carry information about the

3D pose of the palm and �ngers. Shading cues are an important component

of human perception, but exploiting them in a vision algorithm is known to

be extremely challenging. In hand images, shadows and lighting variations

make it di�cult to interpret intensity changes correctly. As a result, it is

unlikely that the accuracy of pose estimation due to shading alone would

exceed that available from the kinematics.

Stereo is the second alternative approach to pose estimation, for links

that are visible in two or more camera images. In stereo, triangulation with

corresponding pairs of image points, such as fa1;a2g in Fig. 2.2, produce 3D

estimates of fa;b; c;dg. Stereo is inadequate by itself, however, when a link is

not visible in both views due to occlusion, a common occurrence in practice.

But suppose that a kinematic model is available in addition to stereo. In

this case, localizing three of the points by stereo determines the plane of

the �nger, and the position of the fourth point can be determined from a

single view. This illustrates another key feature of the kinematic model: it

captures redundancy in the measurements, which leads to an overdetermined

estimation problem.

Kinematic models play three main roles in tracking. First, they param-

eterize the DOFs on the object, and provide a mathematical representation

for the output of the tracking algorithm| a trajectory in state space. Sec-

12 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

x

y

z
Image 1

a

a

b

b

c

c

d

d1

1

1

1
d2

c2

b2

a2

Image 2

z
y

x

Figure 2.2: Use of an additional stereo image to reconstruct the 3D pose of
the �nger depicted in Fig. 2.1 (a).

ond, they express constraints on the motion of the rigid bodies making up

the articulated object. These constraints lead to an over-determined estima-

tion problem in the image measurements, which is desirable for good noise

properties. Third, the kinematics also constrain the possible occlusions be-

tween the rigid bodies. Kinematic analysis plays an important role in the

development of tracking algorithms for self-occluding motion in Chpt. 3.

This chapter begins with a brief description of the mathematical founda-

tions of kinematic modeling. These representations originated in the robot

manipulation literature, but have been adapted slightly to meet the require-

ments of visual tracking. This presentation is signi�cantly more complete

than any that has appeared in the visual tracking literature to date. The

application of kinematic modeling techniques is illustrated for the hand. The

resulting kinematic hand model is employed throughout this thesis. Calibra-

tion of kinematic and camera models are described, along with the e�ect of

their errors.

2.2. KINEMATIC MODELING OF ARTICULATED OBJECTS 13

The second half of the chapter describes the incorporation of kinematic

models into tracking algorithms. The kinematics provide a forward model

for the object, generating predicted images as a function of the estimated

state. This chapter addresses the geometric component of the forward model,

and ignores the e�ects of occlusion. In this chapter, every rigid body in the

model is assumed to be completely visible to the camera. The forward model

interacts with the input image through a residual error measure. Minimizing

the residual through gradient-based algorithms brings the projection of the

model into alignment with the input images.

The image intensities generated by the object determine the measure-

ments that are available for tracking, and therefore the form of the resid-

ual error. Two residual errors are examined here. The �rst is a general

template-based residual that can be applied to arbitrary articulated objects.

The second residual is derived from geometric line and point features that ap-

proximate the template residual in the case of objects, like hands and bodies,

made up of cylindrical links. The feature residual is a closed form expres-

sion that is amenable to analysis and real-time implementation on modest

computing hardware.

2.2 Kinematic Modeling of Articulated Objects

I employ standard kinematic modeling techniques from robotics [59] to rep-

resent skeletal constraints for tracking. These models have been used for

decades to solve robot control and path planning problems. They have

good theoretical properties and support e�cient on-line algorithms. Denavit-

Hartenberg notation, for example, provides a standard description for kine-

matic chains like the �nger. This notation has already been employed in

hand models for computer graphics [52], but has not been used explicitly

in hand or body tracking to date. One of the goals of this thesis is to ex-

plore the connections between articulated tracking and robot control more

14 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

carefully than previous authors. For example, historical robot control issues

like kinematic singularities have close parallels in hand tracking, as I will de-

scribe later in Sec. 2.5.3. Developing these parallels makes techniques from

the robotics literature available for articulated tracking analysis.

All previous work on 3D human tracking employed some form of kine-

matic model. The two earliest systems, by O'Rourke and Badler [42] and

Hogg [23], predated the widespread popularization of robot kinematic mod-

els by Paul [43]. They employed their own customized kinematic representa-

tions. The use of robot kinematic models for human body tracking was �rst

proposed by Yamamoto and Koshikawa in [72]. This work did not present

a detailed modeling framework, however, but relied on a separate software

package for kinematic computations.

The kinematic models described in this section form the basis for all of

the tracking algorithms in this thesis. Mathematical representations of object

kinematics are presented here in detail. Following this description, a kine-

matic hand model is derived from an anatomical study. This illustrates both

the usefulness of the modeling framework and the speci�c concerns of kine-

matic modeling for visual tracking. Models must be calibrated before they

can be used, and the calibration process, along with the e�ects of calibration

errors, is described at the end of the section.

2.2.1 Coordinate Frames and Transformations

An articulated object is made up of rigid bodies, called links, connected

by joints. Each link has its own coordinate frame in the kinematic model,

and pairs of link frames are connected by coordinate transformations. A

coordinate transform from frame i to frame j, written Tj
i , is speci�ed by a

rotation matrixRj
i and translation vector d

j
i , arranged in a 4x4 homogeneous

16 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

in the model. It is convenient to add an additional shape coordinate frame

to each link, which positions the visible geometry relative to the link frame.

Having an additional frame is useful, as the coordinate frame choice which is

best for the kinematic description may not be the best for shape modeling.

The choice of shape frame, like the choice of link coordinates, depends on

the application. The speci�c choices made in hand modeling are described

in the next section.

A series of links connected by joints forms a kinematic chain. The posi-

tion of any link in the chain can be obtained by multiplying transformation

matrices. For example, the position of the link 3 frame in Fig. 2.3 with re-

spect to the camera is given by T3

c = (Tc
w)

�1T1

wT
2

1T
3

2 = Tw
c T

1

wT
2

1T
3

2. Joints

are modeled by parameterized coordinate transformations, Tj
i (v), called joint

transforms. A joint transform has the form of Eqn. 2.1, but is a matrix func-

tion of a vector v of kinematic parameters, such as joint angles and link

lengths.

Link frames and joint transforms make up the topological part of the

kinematic model| they specify the number of rigid bodies and their inter-

connections. The topological part of a human kinematicmodel comes directly

from basic anatomy. A �nger, for example, consists of three phalanges (rigid

links) connected in series by the two knuckle joints. Kinematic parameters

for the joint transforms make up the parametric part of the kinematic model.

They consist of the object's DOFs and any �xed model parameters.

The two types of joint transforms used in this thesis are spatial transforms

and Denavit-Hartenberg transforms. Spatial transforms model the six DOFs

between two link frames that are not in physical contact. It is used in the

hand model to position the palm relative to the world frame. I use quater-

nions to represent the rotational part of the spatial transform. Quaternions

encode the axis-angle representation of rotation with four parameters.3 Three

3See [38] for general information about quaternions and spatial transforms.

2.2. KINEMATIC MODELING OF ARTICULATED OBJECTS 17

parameter representations, like Euler angles, have singularities at which their

Jacobian loses rank, making tracking more di�cult. These singularities are

not a natural result of the kinematics, but an artifact of the parameter-

ization. Since an object like the hand may achieve an arbitrary pose with

respect to a given camera, it is di�cult to ensure that singular con�gurations

are avoided. Quaternions are the minimal singularity-free representation of

the rotation group [60]. They have a long history of use in satellite con-

trol [69], and more recently in vision [21] and computer graphics [58]. The

resulting spatial transform has seven parameters.

Since the four quaternion variables are not a minimal description of ro-

tation, they are subject to a unit norm constraint that reduces their DOFs

to three. Speci�cally, a quaternion vector Q must satisfy QTQ = 1 at all

times. As a result, quaternion-based tracking is technically a constrained

estimation problem. I follow the practice described in [22] of expressing the

quaternion rotation matrix in a form that includes the normalization. The

resulting quaternion estimate is re-normalized periodically to prevent the

accumulation of numerical errors.

When two links are physically connected by a joint, the coordinate trans-

formation between them must have fewer than six DOFs. The Denavit-

Hartenberg (DH) notation [13] provides a consistent parameterization in this

case. Each DH transform is composed of four basic transformations:

Ti+1
i (�i; di; ai; �i) = Rotz(�i)Transz(di)Transx(ai)Rotx(�i) ; (2.2)

where Rot(�) represents a rotation about a given axis, and Tran(�) a trans-

lation along it. See [59], Fig. 3-4, for an illustration of the general DH

transform, which is widely used in robotics. The parameters f�i; di; ai; �ig,

along with the choice of the link frame, can be used to model all lower pair

joints of interest. The DH parameters can be divided into two groups: state

variables, which represent the DOFs of the object at the joint, and �xed

parameters, which describe the object's geometry and are unchanged by its

18 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

DIP – Distal Interphalangeal Joints
1 DOF each

PIP – Proximal Interphalangeal Joints
1 DOF each

MCP – Metacarpophalangeal Joints
2 DOF each

Phalanges

Proximal

Middle

Distal







Radius

Metacarpals

Carpals

Ulna

1

2

3

4

5

Metacarpocarpal Joints
1 DOF each on digits 4 & 5

Thumb IP Joint
1 DOF

Thumb MP joint
1 DOF

Trapeziometacarpal Joint
3 DOF

Figure 2.4: Hand skeleton and joints. This is Fig. 1 from [61], used with

permission.

motion.

The kinematic representation described above can be applied to a wide

variety of objects, from humans to industrial robots. In the next section, it

is used to develop a hand kinematic model, which is employed in all of the

tracking experiments in this thesis.

2.2.2 A Kinematic Hand Model

Kinematic models for visual tracking need only describe motion which a

camera can measure. As a result, they can be considerably simpler than those

20 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

Finger chains are built up from revolute joints, which constrain two links

to a single rotational DOF around the joint axis. Figures 2.3 and 2.5 illustrate

the link frame assignments for the revolute joint model. The frame for link i

is chosen so that �i (in Eqn. 2.2) is the revolute joint angle, and the negative

x axis passes through the joint center of link i � 1. With this choice of

coordinates, the DH kinematic parameters di and �i are zero, and ai equals

the link length. Making these substitutions in Eqn. 2.2 gives the revolute

joint transform

Ti+1
i = Rotz(�i)Transx(Li) ; (2.3)

where Li is the length of the ith link. The link lengths are the �xed param-

eters in the kinematic model. They are determined before tracking begins

through a calibration process described in Sec. 2.2.3. Once they have been

speci�ed, the state variables �i completely determine the con�guration of the

�nger chains. Each �nger contributes four joint variables to the state vector.

The arrows in Fig. 2.5 illustrate the axes of the revolute joints of the �ngers

and thumb. The two DOFs at each �nger MCP joint are modeled by a pair

of revolute joint transforms, each with a single DOF. Arbitrary compound

joints can be described in this manner. The shape frame for �nger links is

positioned at the joint center, immediately following the link rotation. Thus

the transform between link and shape frames is given by

Ts
i = Rotz(�i) (2.4)

Table 2.1 presents the kinematic model of the palm and �rst �nger in

its full detail. This is an excerpt from the table in Appendix A containing

the complete hand kinematics. The table is a formatted version of a �le the

DigitEyes tracking system reads in when building its kinematic model. Each

frame is numbered, and its entry in the column titled Next is a pointer to

the frame that follows it in the chain. These pointers specify the topology

of the kinematic model. Joint transforms are automatically created for links

22 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

This e�ect is modeled by placing an additional revolute DOF at the thumb

MP joint, as shown in Fig. 2.5. Placing the oppositional DOF there, rather

than at the base, helps limit its impact on the model. This choice was

motivated by the experience of Rijpkema and Girard in their grasp modeling

system [52]. They employed a similar thumb model and obtained realistic

computer graphic animations of hand grasps. Aside from this extra joint, the

thumb model is quite similar to that of the �ngers, with two DOFs at the

trapeziometacarpal joint and one each at the thumb MP and IP joints. The

thumb occupies frames 29 through 36 in the kinematic table of Appendix A.

Real hands deviate from the above modeling assumptions in three main

ways. First, most �ngers are slightly nonplanar. This deviation could be

modeled by allowing nonparallel joint axes, but the planar approximation

has proved to be adequate in practice. Second, the last two joints of the

�nger (the distal and proximal interphalangeal joints) are driven by the same

tendon and are not capable of independent actuation. It is simpler to include

these DOFs separately, however, than to model the complicated angular

relationship between them. The third deviation stems from the rigid palm

assumption, which ignores the metacarpocarpal joints at the base of �ngers

4 and 5 (see Fig. 2.4). When gripping an object, like a baseball, these joints

permit the palm to conform to its surface, causing the anchor points to move

by tens of millimeters. For free motions of the hand in space, however, this

deviation is small enough to ignore.

The full hand model consists of 16 rigid bodies and a 28 dimensional state

vector. The kinematic model described above is fairly standard, and closely

related models have appeared in the user-interface, computer graphics, and

biomechanics literature [61, 52, 66]. The most common di�erence between

kinematic hand models is in their treatment of the metacarpophalangeal and

trapeziometacarpal joints. This dissertation does not explore these subtleties

of hand modeling in any signi�cant detail. Kinematic modeling issues are

secondary to the more basic concerns of real-time tracking and occlusion-

2.2. KINEMATIC MODELING OF ARTICULATED OBJECTS 23

handling which are the focus of this research. Once a solid foundation for

visual articulated object tracking has been established, the development of

accurate kinematicmodels for speci�c applications can be explored in earnest.

Articulated objects like the hand are subject to other motion constraints

besides the kinematic joints which are the focus of this chapter. Regions

of the state space may be inaccessible to the model, for example, due to

joint limits and non-interpenetration. This leads to inequality constraints

on the state estimates. Moreover, as a result of actuation and motor control

patterns, groups of states will often be coupled during characteristic motions.

For example, the �ngers will follow similar state trajectories in making a �st.

Since these constraints act on the state space at a level above the basic

kinematics, they were not addressed in this work.

Kinematic models for the entire body could be developed using the meth-

ods described in this section. In fact, the body's kinematics are topologically

quite similar to those of the hand, with the torso playing the role of the palm

and the arms and legs taking on the role of the �ngers. Like the �ngers, the

kinematic chains of the arms and legs are predominantly planar. One point

of departure is the much greater
exibility of the torso compared to the hand

as a result of the spinal column.

Adopting kinematic representations from robotics makes it possible to

track any articulated object with the same mathematical framework. This

generality is re
ected in the software implementation of the DigitEyes track-

ing system. Any object that can be modeled using the techniques of this

chapter can be tracked simply by changing the �le illustrated in Table 2.1.

This capability is exploited in Chpt 4, where di�erent subsets of the whole-

hand model are employed in separate experiments. To use a kinematic model

for tracking, its �xed parameters must be determined from the actual, phys-

ical hand. This is accomplished in the kinematic calibration stage described

next.

24 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

2.2.3 Kinematic Model Calibration and Errors

Calibrating the kinematic model by setting its �xed parameters is the most

challenging aspect of hand modeling. The 21 joint axes, 15 link lengths,

and 5 anchor points of the hand were determined in a three stage o�-line

calibration process. First, the joint axes were initialized following the �nger

and thumb anatomy of the previous section. Next, the link lengths were

determined in two steps. In the �rst step, the distances between the three

knuckles in each �nger were measured with a ruler at the surface of the skin,

to give a rough length for each link. Then, the resulting kinematic model was

�t to each �nger separately in two images taken with a calibrated camera:

�nger outstretched and �nger curled. The link lengths were tuned manually

until the projected hand model matched the images. Obtaining link lengths

for the �ngers and thumb took about four hours.

Finally, the anchor points were determined in the last stage. They are the

most challenging parameters to calibrate, as they are di�cult to measure on

real hands, and di�cult to identify in images. The anchor point calibration

strategy exploited the known link lengths from the previous stage, and three

images of the back of the hand with �ngers extended: one looking straight

down (called image 1) and two at oblique angles (images 2 and 3.) The

�rst step was the arbitrary assignment of the palm origin to the MCP joint

center of the �rst �nger. Measurements with a ruler gave rough estimates of

the anchor points with respect to this frame in the x and y axis directions

(parallel to the plane of the palm, with the y axis pointing down the �rst

�nger.)

Given these preliminary anchor points, an interactive version of the track-

ing system was used to �t the complete hand model to image 1. After a few

iterations, the anchor points were \released," freeing each �nger and thumb

to move independently of the palm. This allowed the base of each digit to

shift until the error in its tip and edge positions was minimized. The original

2.2. KINEMATIC MODELING OF ARTICULATED OBJECTS 25

anchor point and the current base of each �nger and thumb were overlaid

on the hand image. Estimation was halted after a few iterations, and the

original anchor points were manually adjusted to agree with the new base

positions. This procedure was repeated with the two oblique images, to lo-

calize the anchor points along the z axis (out of the plane of the palm.) It

took a few hours to calibrate the anchor points. The calibration procedure

described above was performed once for my right hand, and the resulting

kinematic model was used in all subsequent experiments. It is presented in

Appendix A in its full detail.

The calibration goal of this dissertation was to obtain a useful kinematic

model as quickly as possible. The experimental performance of this model on

a wide variety of hand images indicates that this goal was achieved. However,

calibration is likely to remain a nontrivial component of any future model-

based articulated object tracking system. The adequacy of the hand model

calibration is discussed further in Chpt. 4, and an approach to automatic,

on-line calibration is discussed in Chpt. 6. The remainder of this section

presents a taxonomy of kinematic model errors, and describes their e�ect on

tracking performance.

Errors can occur in both the topological and parametric parts of the

kinematic model. Topological errors, like incorrect joint axes, are the result

of anatomical deviations from the model. For example, if a �nger exhibits

a large deviation from planarity, the joint axes of the planar �nger model

will be incorrect. As a result, it will be impossible to set the state variables

so that the �nger links are registered with the image. This type of error is

easily detected by overlaying the model projection on the image.

Improper calibration can also produce errors in the link lengths and an-

chor points that make up the �xed model parameters. The e�ect of incorrect

link lengths is particularly striking. If the links are too long, the �nger de-

velops obvious \kinks" in trying to �t its image. If the links are too short,

the model �nger tip never reaches its match in the image. Errors in the an-

26 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

chor points are the most di�cult to detect and correct, as they may not be

apparent unless the model is �t to the image under a wide range of viewing

angles.

I encountered all three of these types of kinematic errors in the early

stages of hand modeling. They proved to be fairly easy to detect using an

interactive tracking system. The system I developed made it possible to �t

hand models to images, see the result in 3D from an arbitrary viewpoint, and

quickly modify the joint angles to observe their e�ect on registration. The

importance of having an interactive system when developing these models

cannot be over-emphasized. With this tool, the space of possible models

could be searched e�ciently and problems diagnosed quickly. The interactive

system is described in more detail in Chpt. 4.

A calibrated kinematic model can be viewed as a mapping from the state

space to the 3D positions of the shape frames, which contain the visible sur-

faces of the links. The next stage in this mapping is the projection of the 3D

link geometry into the image plane. This is accomplished through a camera

model, which maps points from the shape frames into image coordinates.

2.3 Camera Modeling and Calibration

As with the kinematics, cameras can also be modeled by transformations

between coordinate frames. The imaging geometry of a pin-hole camera

is modeled by a projective transform between the camera and image bu�er

coordinates [16]:

Pc
b =

2
64
�u 0 u0 0

0 �v v0 0
0 0 1 0

3
75 : (2.5)

The intrinsic camera parameters, f�u; �v; u0; v0g, de�ne the scale factors and

origin for the camera's sensor array. The image coordinates of a 3D point pc

located in the camera frame are w = [xb=zb yb=zb], where pb = [xb yb zb] =

2.3. CAMERA MODELING AND CALIBRATION 27

Pc
bpc. Let S[�] denote the scaling operator that returns the �rst two elements

of a vector divided by its third. Furthermore, let Tw
c specify the camera

position with respect to the world frame (the extrinsic camera model.) The

projection of a world point pw into the camera image can then be written

w = S[Pc
bT

w
c pw] = S[Ppw] ; (2.6)

where P is the 3x4 camera projection matrix.

When the distances between points on an object of interest are small

compared to the distance to the camera, the perspective projection model

can be approximated by orthographic projection

w = �Pc
bT

w
c pw = �Ppw ; (2.7)

where

�Pc
b =

"
�u 0 0 u0
0 �v 0 v0

#
(2.8)

is an orthographic transform, and �P is the 2x4 orthographic projection ma-

trix. The fact that the camera and kinematic transformations have a similar

algebraic form makes it easy to combine them in one representational frame-

work.

Camera models are speci�ed by the sets of intrinsic and extrinsic parame-

ters. These parameters must be determined in a calibration stage before the

model can be employed for tracking. I used Robert's calibration algorithm,

described in [53], for all of the experiments in this thesis. The algorithm

uses a single image of a cube of known size to determine both the intrin-

sic and extrinsic camera parameters. The procedure has two stages: First,

the user manually identi�es the position of six predetermined points in the

cube image, and an approximate calibration matrix is generated. Second,

the approximate model is re�ned in an iterative stage using additional, au-

tomatically detected image features and a standard numerical minimization

28 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

package. The advantage of Robert's algorithm is that the image features are

continuously updated in the iterative stage along with the camera model,

reducing the e�ect of any initial errors in locating the image points.

Evaluating the accuracy of a calibrated camera model is a di�cult task.

In theory, image features from two faces of the cube image provide su�cient

geometric constraints for calibration (see [16], Sec. 3.4.1.3). However, since

numerical minimization is employed, there is no guarantee that the stopping

point is the global minimum. A partial evaluation of the calibration accuracy

was obtained when a pair of cameras were calibrated for stereo experiments.

In this case, the epipolar lines for features in both images were examined

and found to be accurate to within the image resolution. Additional exper-

imental evaluation of Robert's algorithm is described in [53]. An advantage

of calibrating with a cube target, as opposed to the series of grid positions

that are traditionally employed, is that multiple cameras with convergent

axes can be easily calibrated with respect to the same world frame (de�ned

within the cube.) The calibration cube was manufactured out of PVC plastic

to a tolerance of �0:003 in. on all dimensions, by K2T, Inc.

2.4 Tracking Through Template Registration

Visual tracking is a sequential image registration problem. The state estimate

in each frame minimizes the residual error between the projected object

model and the image. Di�erent tracking approaches are distinguished by

the choice of residual function. In template registration, the residual error

measures the intensity di�erence between an input image and the image

predicted by the kinematic model. A set of templates describe the image

appearance of each link. The position of each template in the image is

given by the kinematic and camera models as a function of the state. State

estimates are obtained by minimizing the residual numerically.

This section has four parts. First, deformation functions are developed

30 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

as illustrated in Fig. 2.6. The template plane determines the position in the

shape frame of each template pixel.

Given the approximate pose of a link relative to the camera, the appro-

priate template plane can be chosen automatically. The number of required

templates is a function of the shape and photometry of the link. For cylindri-

cal links, like �nger phalanges, a single view may be enough, while an object

like the palm or body torso will require more. The number of required views

for cylindrical objects can be reduced signi�cantly by allowing the template

plane to rotate around the axis of symmetry, maintaining a frontal camera

orientation.

The template plane model merges geometric and photometric aspects of

image appearance in a single framework. The orientation and position of the

template plane relative to the camera capture the e�ects of foreshortening

and rotation on the image of the link. The template pixels capture intensity

variations at a �ner scale resulting from the shape of the �nger phalanges.

A variety of features, from edges to textures, can be employed by changing

the form of the template.

Given the state of the hand, the image appearance of each link can be

synthesized by projecting its template plane through the camera model. The

combination of kinematic and camera transforms is represented by a de-

formation function [51], f(q; s), which maps template coordinates to image

coordinates as a function of the state. If s = [u v] denotes a template pixel

and w = [x y] denotes its corresponding image pixel, then w = f(q; s). This

mapping is illustrated in Fig. 2.6 for a �nger tip template. The deformation

function is constructed from a series of coordinate transformations. Let the

coordinate axes of template Ij, expressed in its shape frame, make up the

column vectors of the 3x2 matrix Fj . Combining this with Eqns. 2.2, 2.4,

and 2.7 yields the orthographic deformation function

fj(q; s) = �PTj
w(q)T

s
j(q)Fjs : (2.9)

2.4. TRACKING THROUGH TEMPLATE REGISTRATION 31

Deformable template models have appeared in previous tracking and

registration work. Their use for pattern recognition goes back at least to

Widrow [70]. In 1981, Lucas and Kanade [36] proposed an image registra-

tion scheme using a�ne deformations that has become a standard solution to

optical
ow and point tracking problems. In joint work with Andy Witkin,

I investigated an approach to 2D template tracking based on deformation

models [51]. In our approach, the arbitrary (rigid or nonrigid) motion of the

pixels was assumed to be the result of an unknown, but smooth, deformation

function. This unknown deformation was approximated by its truncated

Taylor Series, resulting in a family of polynomial deformation models. I

developed a real-time system on an SGI GTX workstation that used these

models to track a small window of pixels, selected by the user, through an

image sequence. A related hierarchy of 2D motion models was published

later by Bergen et. al. [6]. The kinematic deformation model of Eqn. 2.9 is

a natural extension of this earlier work to a 3D tracking domain. A further

extension of this paradigm occurs in Chpt. 3, in addressing self-occluding

motion.

2.4.2 SSD Residual Error Function

The residual function for template registration measures the intensity dif-

ference between a deformed template and an input image. I employ the

standard Sum of Squared Di�erences (SSD) error measure between �ltered

pixels. In the SSD approach, both the input image and the templates are

convolved with a �lter and subtracted, squared and summed to obtain the

residual error. By changing the �lter, di�erent properties of the image can

be emphasized. For example, using a Laplacian of Gaussian (LOG) �lter

produces a residual error which is sensitive to edge energy. Using Eqn. 2.9,

the residual at a pixel s in template Ij can be written

Rj(q; s) = Î(fj(q; s))� Îj(s) ; (2.10)

32 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

where Î and Îj are the �ltered input image and template, respectively. The

template error resulting from this residual choice is given by

E(q) =
1

2

Z
Ij

Rj(q; s)
2 ds =

1

2

Z
Ij

[Î(fj(q; s))� Îj(s)]
2 ds : (2.11)

Each template in the object model contributes an error term of the form of

Eqn. 2.11.

The SSD residual is one possible choice from a large class of image sim-

ilarity measures [55, 25]. It is a traditional choice for template matching

applications, because it works well in practice. Any di�erentiable residual

could be employed in Eqn. 2.11 to measure the error, and the rest of the

framework would remain unchanged.

2.4.3 State Estimation by SSD ResidualMinimization

The residual in Eqn. 2.10 is a nonlinear function of the state q. There

are two main sources of nonlinearity: trigonometric terms in the kinematic

model from Eqn. 2.9, and intensity variations in the template and input

images. Use of a perspective camera model introduces a secondary source of

nonlinearity. The kinematic model is a smooth function of the state. SSD

error functions are also observed empirically to be smooth and approximately

quadratic around their minima [4]. As a result, Eqn. 2.11 can be treated as

a smooth function of the state and minimized numerically through standard

gradient-based methods [14]. The use of continuous variable optimization

techniques is one of the key distinctions between the tracking approaches in

this thesis and [72], and the earlier works of O'Rourke [42] and Hogg [23].

These optimization techniques make it possible to search much larger state

spaces than classical interval analysis or constraint satisfaction approaches.

Given an error function like Eqn. 2.11, tracking can proceed by a sim-

ple gradient descent minimization algorithm. If Ek(�) denotes the state-

2.4. TRACKING THROUGH TEMPLATE REGISTRATION 33

dependent error for input image Ik, the state update is given by:

qk = qk�1 � �
@Ek

@q
(qk�1) (2.12)

where � is the step size. The update step can be iterated when the inter-frame

motion is large. The estimate from the previous frame, possibly modi�ed by

velocity-based prediction, serves as the starting point for minimization in the

current frame. Sec. 2.5.3 discusses the use of more sophisticated minimization

algorithms than gradient descent.

Di�erentiating Eqn. 2.11 yields

@E

@q
=
Z
Ij

Rj(q; s)
@Rj

@q
(q; s)ds =

Z
Ij

Rj

@fj

@q

T @Î

@w
ds ; (2.13)

where @Rj=@q denotes the residual Jacobian. The residual Jacobian is a

product of two terms, the derivative of the deformation function, and the

image gradient. Since the deformation function is a product of kinematic

transforms (see Eqn. 2.9,) its derivative must take the form of a kinematic

Jacobian. The derivation of this Jacobian and its on-line computation are

discussed in the next section. The Jacobian maps state velocities to the image

plane velocities of template pixels. It follows that the residual Jacobian at

an image point is a weighted combination of the kinematic Jacobian of its

associated link template point.

The key to the practical success of the gradient-based minimization ap-

proach is a high image sampling rate, which limits image motion between

frames. Templates will generate useful error signals only when they \see"

a signi�cant portion of the link they are tracking, making it important to

limit motion in the image plane. In the state space, a region of convergence

(ROC) exists around the global minimum. Interframe motion must be small

enough for the predicted state, which determines the starting point for mini-

mization, to fall within the ROC at each image [64]. Analyzing the required

sampling rate is di�cult, as it depends on the object state, the form of the

34 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

residual error measure, and the image properties. However, experimental

results in Chpt. 4 indicate that image motions of �ve to ten pixels can be

handled successfully, corresponding to a 15 Hz sampling rate under normal

hand motion.

2.4.4 Deformation Function Jacobians

The deformation function of Eqn. 2.9 is a series of coordinate transforma-

tions. As a result, standard techniques from robotics (see [59], Sec. 5.1)

can be employed to compute its Jacobian. Let sj be a pixel in template Ij

which projects to wj in the image plane. Let pj = Fjsj denote the point's

coordinates in the shape frame of link j. Suppose further that link frame i

has a revolute joint with angle �i that e�ects the position of frame j. Then

the basic Jacobian component, @wj=@�i, can be derived as follows.

The �rst step is to reorganize Eqn. 2.9, letting Wj denote the point pj

in world coordinates prior to camera projection, obtaining

fj(q; s) = �PWj = �PTsj
w (q)pj = �P[Rsj

w (q)pj + dsj
w (q)] ; (2.14)

where R
sj
w and d

sj
w are the rotation and translation components of T

sj
w , the

position of link j's shape frame in world coordinates.

Separating the transform for Wj into components before and after frame

i and di�erentiating with respect to time yields

_Wj =
d

dt
[Ri

w(R
sj
i pj + d

sj
i) + di

w]

= _�in
i
w �Ri

w(R
sj
i pj + d

sj
i) ; (2.15)

where ni
w is the rotation axis for joint i expressed in world coordinates. The

Jacobian follows immediately as

@fj

@�i
(sj) = �P

@ _Wj

@ _�i
= �P[ni

w � frw(sj)� di
wg] : (2.16)

2.5. TRACKING THROUGH FEATURE ALIGNMENT 35

The term in braces is the moment arm for the rotation of point sj about joint

i, expressed in world coordinates. It is determined by rw(�), a function which

gives the 3D position of a point in template coordinates with respect to the

world frame. From the form of Eqn. 2.16, the Jacobian component for a

revolute joint is obtained by projecting a spatial velocity vector into the image

plane. In cases where perspective e�ects are signi�cant, the orthographic

mapping is replaced by an a�ne approximation to the perspective projection

at each link.

Using Eqn. 2.16 in a tracking algorithm involves the following steps: First,

the spatial positions of all frames are computed with respect to the world.

Then the revolute joints are examined in sequence. For each joint, the tem-

plate planes which it e�ects are processed in order. Each template pixel

involved in Eqn. 2.13 makes a contribution to the Jacobian which is deter-

mined solely by its position with respect to the active joint axis. The total

cost of the Jacobian computation depends on the number of templates, their

size in pixels, the DOFs of the object, and its kinematic topology. Empirical

evaluation of this cost and its rami�cations for real-time implementation are

presented in Chpt. 4. The compact derivation of Eqn. 2.16 and the simplicity

of its computation are fortunate consequences of the highly regular structure

of spatial kinematic models.

2.5 Tracking Through Feature Alignment

In the template registration approach to visual tracking, intensity errors are

used to measure the geometric misalignment between the projected model

and the input image. Templates provide a useful level of generality, and

make it possible to exploit arbitrary texture cues. For a speci�c object like

the hand, however, the constraints provided by template matching can be

approximated by purely geometric error functions involving point and line

features. The advantage of this is two-fold. First, geometric residual errors

2.5. TRACKING THROUGH FEATURE ALIGNMENT 37

tions can be obtained from the deformation function of Sec. 2.4.1. In this

case, only a single line in the template plane, corresponding to the central

axis of the cylindrical link, is mapped through the deformation function. If

sj represents a point along the central axis, its contribution to the residual

error is given by

lj(q; sj) =mTwj � � =mTfj(q; sj)� � ; (2.17)

where m = [a b].

The Jacobian component generated by this residual is

Jlj(q; sj) =
@fj

@q

T

m : (2.18)

The role of the line feature in approximating the template residual can be

seen by comparing Eqns. 2.18 and 2.13. In the line case, the normal vector

m plays the same role as the image gradient. It corresponds to an image

gradient �eld with a zero component along the central axis of the link.

2.5.2 Point Feature Residual and Jacobian

Links at the end of kinematic chains, like the �ngertips of the hand, gener-

ate point features with parameters [x y], as illustrated in Fig. 2.7. The tip

residual measures the Euclidean distance in the image between the projected

model point and the actual tip location, cj , in the image:

vj(q; sj) = kvj(q; sj)k = kfj(q; sj)� cjk : (2.19)

Its Jacobian component is given by

Jvj =
@fj

@q

T vj

kvjk
: (2.20)

In this case, the unit vector in the vj direction models an image gradient

that is nonzero only along radial lines from the tip feature position.

38 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

The residual functions in Eqns. 2.17 and 2.19 measure distances in the

image plane. The feature residuals for each link and tip in the model are

concatenated into a single residual vector, R(q). The total error is then

given by

E(q) =
1

2
R(q)

T
R(q) : (2.21)

This error will be quadratic in the distances from the hand model projections

to the image features. This agrees with the empirical observation that SSD

residual errors are quadratic around their minimum.

Although these approximations were motivated by the hand, they are

applicable to the body as well. The primary di�erence in between �ngers

and limbs is that clothing can provide image gradient constraints in arbitrary

directions, unrelated to the central axis of the limb. However, clothing and

background color will still often di�er signi�cantly, resulting in a strong edge

constraint. If the interior texture is insigni�cant given the resolution of the

camera, then the line and point models can be applied without modi�cation.

2.5.3 State Estimation by Feature ResidualMinimiza-

tion

The state estimation problem can be achieved by minimizing the total error

in Eqn. 2.21. This is a classical nonlinear least-squares problem, which can

be solved numerically by Gauss-Newton minimization [14]. The GN state

update equation is given by

qk+1 = qk � [JTk Jk + S]�1JTkRk ; (2.22)

where Jk is the Jacobian matrix for the residual Rk, both of which are

evaluated at qk. S is a constant diagonal conditioning matrix used to stabilize

the least squares solution in the presence of kinematic singularities. Each

entry in S weights one of the state variables, determining how strongly it is

40 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

Jacobians will be nonzero for all �nger articulations, but they will all lie in

the line formed by intersecting the �nger and image planes. This line will

be parallel to the feature measurement lines produced by the �nger, leading

to loss of rank. The equations re
ect the intuitively obvious fact that when

the �nger is curling towards the camera, the motion of its edges contain no

information about the 3D motion.

Examination of the point feature Jacobian of Eqn. 2.20 indicates that

it possesses the same two singular con�gurations that the line does. How-

ever, the orthogonal case is much less serious for a point feature, as it does

not generate a singular subspace. This analysis demonstrates the value of

the closed form approximations to the template residuals. They lead to an

intuitive mathematical description of a basic property of articulated object

tracking problems.

As in the robot manipulator case [40], state space neighborhoods of the

singular points will exhibit marked sensitivity loss, in that large state space

motions will have little e�ect on the image. This sensitivity loss makes ac-

curate tracking in the neighborhood of singularities di�cult. Experimental

observations of the e�ects of near-singular tracking are discussed in Chpt. 4.

The stabilization method of Eqn. 2.22, which has been used for rigid body

tracking [35], also works for articulated state estimation problems.

2.5.5 Tracking with Multiple Cameras

Both the template registration and feature alignment approaches generalize

easily to tracking with more than one camera. When multiple cameras are

used, the residual vectors from each camera are concatenated to form a single

global residual vector. This formulation exploits partial observations. If a

�nger link is visible in one view but not in the another due to occlusion, the

single view measurement is still incorporated into the residual, and therefore

the estimate. When this framework is augmented with occlusion-handling,

2.6. DISCUSSION 41

the resulting algorithm can utilize any visible pixel from any camera position

in estimating the state. Experimental articulated tracking results using two

cameras were �rst reported in [46, 48]. Two camera results for human body

tracking were presented more recently in [29, 32].

2.6 Discussion

Kinematic models made up of links and joints represent the most basic con-

straints on the motion of articulated kinematic chains, and make it possible to

recover 3D motion from a single image sequence. A kinematic hand model

was developed through anatomical analysis and calibrated using an inter-

active tracking system. Sections 2.4 and 2.5 described two approaches to

estimating the model state from an image sequence.

The template registration approach of Sec. 2.4 belongs to the class of

direct, energy-based vision algorithms which was popularized by deformable

models [65] (including 2D Snakes [28],) and has been applied to a wide variety

of problems [73, 53]. It is a direct method in which pixels are mapped to

state estimates without an intervening feature detection stage. Its advantage

is the direct enforcement of kinematic constraints on image interpretation.

These constraints integrate information from di�erent parts of the image,

reducing the impact of localized interpretation errors on the �nal estimate.

This will turn out to be particularly useful in tracking self-occluding objects

in Chpt. 3.

Constraints in the classic energy-based approach take the form of a smooth-

ness penalty term which is added to the residual error in forming the objective

function. These soft constraints can be viewed as prior distributions over the

state space [62, 63]. They are enforced explicitly, re
ecting the fact that the

size of the over-parameterized state space exceeds the actual DOFs in the

scene. In contrast, kinematic constraints are enforced implicitly through the

joint angle parameterization of articulated motion. Kinematic models are

42 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

hard constraints| no amount of measurement error should cause the rigid

bodies in a chain to separate from each other, or rotate in ways not permitted

by their joints.

Section 2.5 demonstrates that the template residual functions for �nger

phalanges can be approximated by geometric expressions in line and point

features. The result is a second tracking approach based on feature align-

ment. The residuals for point and line features have a closed form expression

which makes the singularity analysis of Sec. 2.5.4 possible. In addition, these

features can be detected through a simple algorithm which is suitable for

real-time implementation, as Sec. 4.3.1 will demonstrate.

44 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

(a) (c)(b)

First Occludes Second First and Second Disjoint Second Occludes First

Figure 3.1: Three snapshots from a motion sequence, illustrating the di�erent
occlusion relations between the �rst and second �ngers of the hand.

main components. The �rst component is a visibility order for overlapping

templates, with the property that no template is occluded by a template

that follows it in the list. The visibility order can be used to determine

which template corresponds to a given region of pixels. The order between

templates changes with the state, as in the transition from �gure (a) to (c).

In (a), the visibility order is fTemplate 1, Template 2g, while in (c) it is

the reverse. The second component in the layered model is a set of window

functions that block, or mask out, the contributions of occluded templates,

as determined by the visibility order. Each template has an attached window

function which moves with it as a function of the state.

Tracking using a layered representation requires the simultaneous solu-

tion of two problems: determining the visibility order for the templates that

describe an object, and registering the overlapping templates to the input

image. In bottom-up approaches to occlusion analysis, visibility order is es-

timated from image motion [11, 67] or contours [41]. This thesis explores

an alternative, top-down approach which uses the kinematic model in con-

3.1. MODEL-BASED OCCLUSION ANALYSIS 45

junction with a high image sampling rate to partition the state space into

regions with a �xed visibility order. In this approach, the visibility order for

the current frame is predicted from the previous state estimate and used to

constrain image interpretation.

The following sections develop the layered template representation in

more detail, and describe its use in a model-based tracking algorithm for

self-occluding objects. The �rst step is an analysis of the visibility orders

for objects, like the hand, that are composed of planar kinematic chains.

The next step is the incorporation of visibility-ordered templates into the

registration algorithm of Sec. 2.4. Window functions provide a mathemat-

ical tool for arbitrating access to the image among overlapping templates.

They are incorporated into a residual error function, which is minimized

by gradient-based methods. The main computational step in gradient-based

minimization is the Jacobian computation for layered templates, which is de-

scribed in detail. This is followed by a discussion of image segmentation, and

an outline of the complete tracking algorithm. The �nal contribution of this

chapter is an analysis of the existence conditions for the invariant visibility

orders employed in tracking. Occlusion ambiguities, in which the visibility

order is not invariant, are introduced and their rami�cations for tracking are

discussed.

3.1 Model-based Occlusion Analysis

The tracking algorithm developed in this chapter is based on a simple ob-

servation: the occlusion relationships between the convex rigid bodies of an

articulated object in motion rarely change instantaneously. As a result, the

visibility order for the object templates is invariant under the small motions

that occur between two frames of an image sequence, given a high sampling

rate. This invariant order makes it possible to remove the discrete, com-

binatoric aspect of occlusion from the tracking problem, leaving only the

46 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>

First
Finger

Second
Finger

φ

φ∆

Disjoint

Disjoint

First
Occludes
Second

Second
Occludes
First x

AB

C D

Viewing
Direction

Figure 3.2: The partition of the rotation space (unit circle) into regions with

an invariant visibility order. This is a top view of the scene in Fig. 3.1, with
the camera located on the right. � gives the rotation of the hand relative to
the camera.

registration of overlapping templates. In this section, the use of an invariant

visibility order in tracking is illustrated for the two �nger motion sequence

of Fig. 3.1.

Figure 3.2 shows the visibility order for the �ngers in Fig. 3.1 as a function

of the hand state. Since the hand has one DOF in this example, the space

of rotations is a unit circle. The angles marked A;B;C;D denote occlusion

events, points at which the occlusion relations change. Passing through � =

A, for example, causes a transition from (a) to (b). The amount of hand

rotation between frames is limited by the sampling rate to a small angle,

��. Therefore, in local tracking the state estimate for the current frame

is restricted to a motion interval of ��� around the previous estimate. If

3.1. MODEL-BASED OCCLUSION ANALYSIS 47

the �k�1 is the state from the previous frame, then it follows that �k 2

[�k�1 ���; �k�1 +��].

Since the occlusion events are sparsely distributed, the visibility order

for the two templates will be constant from frame to frame across most of

the image sequence. The template order in cases (a) and (c), for example,

holds for nearly 90 degrees of hand rotation, which is much larger than ��.

When the motion interval contains an occlusion event, the visibility order

will change. However, the transition always occurs between an occluded

and a disjoint case. As a result, the onset of occlusion can be anticipated

by assigning the occluded visibility order to the disjoint case near the event.

This assignment is achieved by growing the occluded regions into the disjoint

regions by the motion bound, ��, resulting in the state space partition shown

in Fig. 3.2 as dark and light grey bands.

The partition illustrated in Fig. 3.2 divides the state space into regions

with a locally invariant visibility order. This partition has the following

property: Given the state of the object at time k, its membership in the

state partition determines the visibility order at time k + 1. The occluded

partitions (the light and dark grey sets in Fig. 3.2) contain all of the states

that lie within ��� of an occluded con�guration. The disjoint partitions

(the white sets in Fig. 3.2) contain the states for which there are guaranteed

to be no occlusions under bounded motion. These sets form a bu�er zone

in which the tracker can be con�gured for the next occlusion event. The

partition is used in visual tracking problems to predict the visibility order for

the current, unknown state from the previous state estimate. The predicted

visibility order is used in turn to construct a layered template representation

of the image, thereby reducing the tracking problem to the registration of

overlapping templates between frames.

The construction of the partition in Fig. 3.2 depends on three properties

of the motion and the estimator. First, the regions in state space in which

the templates occlude each other must be separated by regions in which

48 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

they are disjoint. Second, the change in state between frames must be small

enough to take advantage of the disjoint regions. If �� is too large, growing

the occluded regions will eliminate the disjoint regions entirely. Third, the

state estimate must be accurate enough to make useful predictions about

membership in the partition. These issues are addressed in more detail in

the sections that follow.

3.2 Visibility Orders for Planar Kinematic

Chains

A key step in the tracking algorithm for self-occluding motion is the con-

struction of visibility orders for link templates. A visibility order for the

bodies in an articulated object is an ordered list with the property that each

body will not be occluded by any of the bodies that follow it. The next three

sections present a set of rules for constructing invariant visibility orders for

objects, like the hand, that are composed of planar kinematic chains. Section

3.4 discusses the existence of these invariant orders in the general case. The

simplest type of visibility order is a binary occlusion relation between two

bodies.

3.2.1 Binary Occlusion Relations

When the image plane projections of two objects overlap, and the visibility

of one of them (object A) is completely una�ected by the other (object B),

it is called a binary occlusion and A occludes B. If two solid objects have

convex shapes, then any occlusion between them will be binary.1

Consider a pair of convex objects undergoing bounded motion, such as

would occur between two frames in an image sequence. If the image plane

1Any two convex bodies can be separated by a plane which divides the viewing sphere

in half, and for all view points in each half, the object it contains is completely visible.

3.2. VISIBILITY ORDERS FOR PLANAR KINEMATIC CHAINS 51

angle �v, between Ev and A:

�v > 0 : �j 2 [0; �v]) B occludes A

�j 2 [�v � �; 0]) A occludes B

�v < 0 : �j 2 [�v; 0]) B occludes A

�j 2 [0; �v + �]) A occludes B

(3.1)

In Fig. 3.3, �v > 0 and �v � � < �j < 0, so that A is occluding B. Occlusion

properties change at the boundaries of the intervals. Note that �j is bounded

away from zero on both sides by noninterpenetration.

As the viewpoint moves out of the joint plane, the amount of occluded

surface area decreases. When the general viewing vector, E, is parallel to

nj there is essentially no occlusion for all joint angles. E makes an angle

�n with the joint plane, in which it has the projection Ev. It follows that

any viewing direction can be represented in the joint coordinate frame by

two angles: �v and �n. The occlusion conditions from Eqn. 3.1 apply only to

viewpoints for which j�nj < �n, for some �xed threshold �n. For viewpoints

above this threshold, the links are disjoint.

Given the state of an articulated object, Eqn. 3.1 can be applied to de-

termine the occlusion at a revolute joint. To use this model for tracking, it

must be extended to include bounded motions of the two links. Bounded

change in the DOFs before link A in the kinematic chain will displace the

joint coordinate frame, causing �n and �v to vary. The exact change in these

angles will be a complex function of the state, but it can be approximated by

restricting them to intervals, In and Iv, of a �xed size, centered around their

current value. Bounded motion between B and A is modeled by an interval

Ij = [�0j � �j; �
0

j + �j], of width �j containing �j. The intervals In and

Iv are de�ned similarly. These intervals can be incorporated into Eqn. 3.1

by replacing inequalities with intersection tests. The normal, viewing, and

joint angles at the current state are �0n, �
0

v, and �
0

j , respectively. The revolute

52 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

occlusion relations are

In \ [��n;�n] 6= ; : �0v > 0 : Ij \ [0; �0v +�v] 6= ;) B � A

Ij \ [�0v ��v � �; 0] 6= ;) A � B

�0v < 0 : Ij \ [�0v ��v; 0] 6= ;) B � A

Ij \ [0; �0v +�v + �] 6= ;) A � B

Otherwise) A � B

(3.2)

3.2.3 Visibility Orders for Hand Templates

The kinematic properties of objects like the hand can be exploited in an

algorithm for visibility ordering link templates. In this approach, templates

are ordered within each �nger chain using the revolute occlusion relation de-

scribed above. Then the chains are compared as distinct objects, avoiding

the complexity of testing each link against all the others. By exploiting the

kinematic structure, the algorithm is e�cient enough for on-line implemen-

tation. A more general approach to computing visibility orders from binary

occlusion relations is described in Sec. 3.4.2

The hand consists of �ve planar kinematic �nger chains and a rigid palm.

As a result of planarity, the three joint axes in each �nger are parallel and

have the same joint plane. This greatly simpli�es the application of revolute

occlusion relations to �nger ordering. A further simpli�cation comes from the

fact that all joint angles must be positive, re
ecting physical limits on joint

motion. As a result, each �nger can be viewed as a convex planar shape.

These two observations lead to a simple procedure for ordering templates

within each link.

If the angle, �n, between the camera and the �nger joint plane exceeds

the threshold, �n, described in Sec. 3.2.2, then the �nger templates are dis-

joint and can be ordered arbitrarily. Otherwise, two applications of Eqn. 3.2

determine the ordering between links 1 and 2, and links 2 and 3 (see Fig. 2.5

2Note, however, that the revolute occlusion relation de�ned above applies only to pairs

of links that share a joint. This de�nition would have to be extended to an arbitrary pair

of links to meet the requirements of the general approach.

3.2. VISIBILITY ORDERS FOR PLANAR KINEMATIC CHAINS 53

for the link numbers, which are the same for each �nger.) Convexity im-

poses strong constraints on the global pose of the �nger, making it possible

to generate the entire visibility order directly from the two pairwise tests,

according to the following table:

1 � 2 or 2 � 3) 1 � 3

2 � 1 or 3 � 2) 3 � 1

1 � 2 and 2 � 3) 1 � 3

(3.3)

The thumb is also a planar mechanism with joint limits, and the �nger tem-

plate ordering rules can be applied to it without modi�cation.

Occlusions between �ngers are almost always binary. This observation

simpli�es visibility ordering by removing the need to consider individual tem-

plates. When the planes for two �ngers are parallel, they can be ordered by

distance from the camera. When the planes intersect, there are three possi-

bilities, illustrated in Fig. 3.4 (a), (b), and (c). In (a), neither chain crosses

the dividing line formed by the plane intersection. In this case, the two planes

divide 3D space into four quadrants, with associated visibility orders given in

the �gure. In (b), one chain crosses the dividing line, but the other does not.

In this case the quadrant labels are di�erent. Note that the transition from

(a) to (b) either leaves the visibility order unchanged, or changes a disjoint

situation to an ordered one.

The only case where nontrivial interaction between the chains occurs is

(c), where they both cross the dividing line. This case requires additional

analysis within the plane of the �nger. The �rst step is to choose the plane

closest to the camera, in which the occlusion e�ect is most visible, and project

the camera viewpoint into that plane. Due to convexity, the other chain will

intersect this plane at one point. Figure 3.4 (d) shows a sample con�guration

of links in this case. If the line in the plane joining the projected viewpoint

and the intersection point passes through the chain, then the chain comes

�rst in the visibility order. Otherwise, the intersecting chain comes �rst.

54 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

Chain 2

Chain 1

Chain 2

1 2

1 >> 2 2 >> 1

2 >> 1

1 >> 2

Top View

(b)

Chain 1

1 2

Top View

(c)(a)

Chain 1

Chain 2

Dividing
 Line

Top View

1 2

1 >> 2 2 >> 1

1 = 2

1 = 2

(d)

Chain 2 Plane

Chain 2

Chain 1

Projected
Camera

Figure 3.4: Types of intersections between two planar kinematic chains. In

(a), chains are con�ned to separate sides of the dividing line at which their
planes intersect. In (b) one chain crosses the line, and in (c) they both do.
The viewpoint relative to the dividing line determines the visibility order.
(d) shows the ordering test from (c) in the chain 2 plane.

In order for the plane intersection test to be valid under bounded motion,

it is necessary to model the e�ect of chain motion within the plane and motion

of the plane itself on the outcome. If the test is applied between �ngers

and thumb on the same hand, then palm motion will not e�ect the type

of intersection, but may change the camera's quadrant. Since the decision

hinges on whether each chain crosses the dividing line, this can be modeled

by bounding the distance to the line for the closest part of each chain. The

only nontrivial transition is from case (b) to (c). In this situation, a �nger

or thumb tip intersects the other chain's plane for the �rst time. The point

of intersection can be predicted from the motion, or bounded by intersecting

the bound on tip displacement with the plane.

Finger planes will intersect each other due to abduction. However, these

planes are roughly parallel, and the intersections will almost always be of type

3.3. ESTIMATION WITH LAYERED TEMPLATES 55

(a) in Fig. 3.4. As a result, there is a simple visibility ordering algorithm

for the �ngers: sort the anchor points for each �nger based on distance to

the camera along the optical axis. This determines the �nger ordering. The

thumb plane can intersect the �nger planes in a variety of ways depending

on the motion, and the intersection tests described above must be applied

in this case. In most situations, the outcome of the test between the thumb

and �rst �nger can be applied to the rest of the �ngers as well.

Finally, the plane of the palm sweeps out a volume in space in the di-

rection of the camera axis. If the tip of a �nger or the thumb intersects

this volume, then the palm comes before that chain in the visibility order,

otherwise after. A visibility order for hand templates can be constructed

from the tests described above. These tests are simple to implement, making

it possible to update the ordering on-line whenever a new state estimate is

available. Note that the fundamental assumption in the above analysis is

the planarity of the kinematic chains comprising the object. This modeling

assumption is also valid for arms and legs, suggesting that the ordering tests

described above could also be applied to human �gures.

3.3 Estimation with Layered Templates

Using the techniques from the previous section, hand templates can be main-

tained in visibility order during tracking. This section describes an algorithm

for registering an ordered set of overlapping templates to an input image.

Tracking is achieved by applying this algorithm to each frame in a motion

sequence, using the estimated state from the previous frame as the starting

point for registration. Window functions are the key to registration. They

model the appearance and disappearance of template pixels as a result of

the image plane motion of overlapping templates. The resulting gradient-

based minimization problem requires the derivation of Jacobians for layered

templates, and algorithms for image segmentation. These components are

3.3. ESTIMATION WITH LAYERED TEMPLATES 57

two templates are combined to give a composite image:

Ic(x) =M1(x� x1)I1(x� x1) + [1�M1(x� x1)]I2(x� x2) (3.4)

where I1;2(�) are the templates and M1 is the window function for template

1. Given m(�; L), a unit window of length L for 1D images, it follows that

M1(�) = m(�; L1).

Ic(�) represents the forward model of the image as a function of the state.

The 2D version of this function is formed by combining the deformable tem-

plate model of Sec. 2.4.1 with the layered occlusion representation described

above. A 2D version of Eqn. 3.4 can be written

Ic(q;w) =M1(q;w)I1(f
�1

1 (q;w))+ [1�M1(q;w)]I2(f
�1

2 (q;w)) ; (3.5)

where f�11;2 are inverse deformation functions for the two templates that map

from image coordinates to template coordinates as a function of the state.

Since the functions f1;2 are a�ne in the image coordinates, their inverses are

well-de�ned. M1(q;w) denotes the window function for template 1, posi-

tioned in the image. It is de�ned for a general template, Ij, as

Mj(q;w) = mj(f
�1

j (q;w)) ; (3.6)

where mj(s) is a 2D unit window in template coordinates, that is equal to

one inside the template's boundary contour and zero everywhere else, as

illustrated in Fig. 3.6.

The incorporation of the composite image in an SSD residual can be

illustrated in the more complicated case of adding a background template,

Ib, to Eqn. 3.5 obtaining

E(q) =
1

2

Z
I
[Î(w)� Îc(q;w)]

2dw

=
1

2

Z
I
[Î(w)�M1(q;w)Î1(f

�1

1 (q;w))� [1�M1(q;w)]�

fM2(q;w)Î2(f
�1

2 (q;w)) + [1�M2(q;w)]Îb(w)g]
2dw ;(3.7)

60 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

Two algorithms for obtaining the image segmentation in step 1 are described

in Sec. 3.3.4. Once an image pixel has been assigned to a template, its corre-

sponding template pixel is determined by the inverse deformation function,

and the residual follows easily. The remaining step is the computation of the

residual Jacobian.

3.3.3 Residual Jacobian Computation

Suppose an image pixel, w0, originates from template Ij at template co-

ordinate sj. Furthermore, let p0 denote the 3D position of sj in camera

coordinates, as determined by the position of the template plane. The pixel

at w0 makes the following contribution to the residual

R0 = Î(w0)� Îc(q;w
0) : (3.8)

There are two possible cases for the pixel w0: either it is in the interior

of Ij, or it is on the boundary of Ij and a second template Ik, where j < k.

The Jacobian calculations in these cases rely on two assumptions: that the

window functions are constant in the template interiors and fall to zero at

their boundaries, and that the bodies are opaque, so that no more than two

templates can e�ect a pixel value simultaneously.

For the interior pixel case, the ordered templates can be divided into a

group, fI1; : : : ; Ij�1g, that occludes Ij and a group, fIj+1; : : : ; Ing that is

occluded by it, as illustrated in Fig. 3.8 (a). Window functions and their

gradients for the occluding templates are zero at w0, leading to the simpli�-

cation

R0 = Î(w0)� [1�M1(q;w
0)][1�M2(q;w

0)] � � � [1�Mj�1(q;w
0)]�

Mj(q;w
0)Îj(f

�1

j (q; s0))� I�c : (3.9)

The second term in Eqn. 3.9 is produced by descending the window tree to

node Ij. The gradients of its window functions are zero at w0, so its only

62 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

of mk at sk. This implies that the templates between j and k in the tree

vanish at w0 along with their derivatives. Furthermore, as in the interior

case, the templates occluding Ij and occluded by Ik make no contribution to

the Jacobian. This results in the simpli�ed residual,

R0 = Î(w0)� [1�M1(q;w
0)] � � �Mj(q;w

0)Îj(fj(q; sj))�

[1�M1(q;w
0)] � � � [1�Mj(q;w

0)] � � �Mk(q;w
0)Îk(fk(q; sk)) :(3.11)

Since this is in the form of Eqn. 3.9, it has an interior Jacobian component

as before. Window function gradients from the last two terms yield an ad-

ditional component. In these terms, onlyMj(q;w
0) has a nonzero derivative

at w0. Substituting Eqn. 3.6 for Mj and di�erentiating yields the boundary

Jacobian

JBj;k(s
0) = [Ik(sk)� Ij(sj)]

@f�1j

@q

@mj

@s
; (3.12)

This boundary component captures the e�ect of occlusion in covering and

revealing pixels as the state changes.

The above discussion shows that the residual Jacobian for a template

has two basic types of components: region contributions from Eqn. 3.10 and

boundary contributions from Eqn. 3.12. This suggests a simple algorithm for

Jacobian computation:

1. Scan the segmented image and compute the region contribution to the

Jacobian at each visible pixel, using Eqn. 3.10.

2. Scan the discretized boundary of each template. If a boundary point is

visible, identify the template it is occluding and compute the boundary

Jacobian term from Eqn. 3.12.

The above algorithm, along with the segmentation algorithm described in

the next section, forms the basis for gradient-based local tracking.

3.3. ESTIMATION WITH LAYERED TEMPLATES 63

3.3.4 Algorithms for Image Segmentation

Each pixel in the input image must be assigned to a template in order to com-

pute its contribution to the gradient. This segmentation problem is closely

related to the visible surface determination problem in computer graphics:

Given a set of polygons in camera coordinates, identify and scan-convert3 the

parts that are visible. Through this analogy, segmentation algorithms can

be divided into two classes: list-priority and scan-line (see [18], Sec. 15.11.)

Templates are scanned sequentially in visibility order in the list-priority

approach, and the most visible template is converted last. Each template is

scan-converted independently, and its pixels in the input image are labeled.

The visibility ordering ensures that each pixel is correctly labeled at the end

of this �rst stage. The labeled pixels are then rescanned in a second stage

to compute the Jacobian, as discussed in the previous section. Pixels con-

tained by overlapping templates are processed multiple times, but template

conversion and pixel labeling is simple and fast. This is the segmentation

algorithm used in the experiments of Chpt. 4. Because of the visibility order,

this approach is superior to the standard computer graphics depth sorting

algorithm, which often splits polygons that can be correctly ordered ([18],

Fig. 15.27.)

In contrast, scan-line algorithms sort the template edges on x and y,

and scan the image one line at a time. When templates overlap, the visi-

bility order determines the pixel assignment, and coherence is used to avoid

unnecessary comparisons. The binary occlusion assumption plays the same

role for coherence as polygon nonpenetration in the graphics case. Scan-line

algorithms are more e�cient than list-priority algorithms: Each pixel is pro-

cessed once, avoiding redundant calculations. The Jacobian can be computed

in one pass, avoiding a labeling stage. They are, however, more complicated

3In scan-conversion, polygons (speci�ed by a set of vertices) are mapped into their

component pixels in the frame bu�er.

64 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

to implement.

The scan-line approach can also be used in situations where a visibility

order is not available. In this case, the depth at each pixel in the scan-line

determines the template order. In this approach, template order is computed

in conjunction with segmentation. However, preservation of the ordering

under bounded motion is not guaranteed, and this approach may require a

prohibitively high sampling rate to work in practice. Moreover, in the case

where the template ordering is �xed for a number of estimation steps, this

version of the scan-line algorithm is ine�cient, as it recomputes the visibility

order each time.

3.4 The Existence of Visibility Orders

The existence of a visibility ordering algorithm for the hand raises the ques-

tion of what other objects can be treated under the same framework. This

section develops general existence conditions for visibility orders. These re-

sults apply to a multibody system with arbitrary degrees of freedom.

3.4.1 Existence Conditions for Occlusion Relations

A multi-body system has a local occlusion invariant if, for a given bounded

motion, one of A � B, A � B, B � A is true for each pair of bodies, A

and B. A visibility order can be constructed in this case, as shown in the

next section. Bounded relative motion between the two bodies is modeled

by M(B), the union of all possible spatial positions of B with respect to A's

coordinate frame.4 In general,M(B) will not be convex. But its convex hull,

CH[M(B)], can be partitioned from A by a separating plane if the occlusion

is unambiguous. This is illustrated in Fig. 3.9 (a) for two 2D bodies viewed

4The spatial position of each body is de�ned with respect to the world coordinate

frame. Above, the reference frame is shifted to A for convenience.

3.4. THE EXISTENCE OF VISIBILITY ORDERS 65

A

B

CH[M(B)]

M(B)

1D Camera
(a)

Separating
Plane

B

A

PA
L

OA
−

(b)

PA
R

OA
+

EA
L EA

R

BA

(c)

Figure 3.9: Occlusion relations for 2D objects viewed by a 1D camera. (a)

Su�cient conditions for A � B, (b) geometric de�nition of occlusion ambigu-
ity, and (c) degenerate con�guration of two planar objects in point contact.
No nonzero bound on relative translation can remove the occlusion ambigu-
ity.

by a 1D camera. The relative motion in this case is rotation of B. The

partition creates two half-spaces. If the image plane projections of A and the

motion image of B, CH[M(B)], don't overlap, A � B. If they do overlap, the

object in the half-space containing the camera will occlude the other object.

In �gure (a), B � A.

The case of occlusion ambiguity is illustrated in Fig. 3.9 (b), using the

same two bodies. For this con�guration, it is impossible to predict the oc-

cluder under the given motion bound. Ambiguity arises when CH[M(B)]

intersects the occluding limb of A. Referring to the �gure, let EL;R
A denote

the pair of line-of-sight tangents to A, with ER
A closest to B. The points

of contact, PL;R
A , are the occluding limbs (in 3D this is a curve in the sur-

66 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

face of A). The pair of tangents bound a region of space, OA (a tangent

cone in 3D,) which contains A and the camera viewpoint. OA is divided

into occluding and occluded regions, labeled O+

A and O�

A . Occlusion ambigu-

ity arises when M(B) has a nonzero intersection with both regions. In this

case, CH[M(B)] intersects A and contains PR
A , and both binary occlusion

outcomes are possible. In general, the likelihood of an occlusion ambiguity

decreases with the motion bound, but it can't be eliminated altogether, as

�gure (c) demonstrates.

When they exist, the set of ambiguous con�gurations will occupy a small

subspace of the total con�guration space, as they depend on a special combi-

nation of spatial proximity and viewing angle. An example of an ambiguous

hand con�guration is the \stop" gesture, with the hand held
at, �ngers

pressed together, and palm facing the camera. In this pose, rotation around

the vertical axis changes the visibility order of the �ngers. In a speci�c case

like the hand, knowledge about ambiguous con�gurations can be used to aid

tracking. Simple velocity-based prediction, for example, could be used to

correctly interpret ambiguous cases. In general, high frame rates reduce the

danger of an incorrect occlusion hypothesis, by making the mislabeled region

of pixels as small as possible.

3.4.2 Visibility Ordering and Occlusion Graphs

The occlusion relations for a multi-body system can be represented by a

directed occlusion graph. The graph is a pair (V;E), where the vertex set V

contains all of the bodies. To construct the edge set, E, consider all pairs

x; y 2 V . Since there are no occlusion ambiguities, one of x � y, x � y, or

y � x must be true. In the �rst case no edge is added, while the other two

cases add directed edges (x; y) and (y; x) respectively. Consider the collection

of 2D rigid bodies viewed by a 1D camera illustrated in Fig. 3.10. Figure 3.11

(a) shows the occlusion graph for the system under bounded translations in

3.4. THE EXISTENCE OF VISIBILITY ORDERS 67

E

X∆

A D

Y∆

F

B

C

Figure 3.10: A collection of 2D rigid bodies under bounded translational
motion relative to a 1D camera. Each body can translate by �X and �Y ,
as shown for body E.

A

C E

F

D

(a)

B FBACDE

(b)

Figure 3.11: (a) Occlusion graph for the mechanism in Fig. 3.10, and (b) the

visibility order produced by sorting the graph.

68 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

the plane.

When the object con�guration admits a visibility ordering, it can be

obtained by searching the occlusion graph. A con�guration that can't be

so ordered is illustrated in Fig. 3.12. In general, the occlusion graph must

be acyclic to induce a natural order on the set of objects. The presence of

occlusion cycles is fairly unusual, at least for convex bodies, as it involves a

special arrangement of spacing and orientation. Cycles don't occur naturally

in hand or body con�gurations, for example.

A
B

A

B

C
C

(a) (b)

Figure 3.12: (a) A con�guration of three objects and (b) its associated cyclic
occlusion graph.

When the occlusion graph is acyclic, it can be topologically sorted by

depth-�rst search [10] to produce a visibility ordering. Figure 3.11(b) shows

the ordering produced by the sample occlusion graph. The sorted graph has

the property that all edges are directed left to right. Taking the vertices

in that order guarantees that no object will be occluded by an object that

follows it in the list.

These results give su�cient conditions for the existence of a visibility

ordering for an arbitrary object. Existence hinges primarily on the absence

of occlusion ambiguities, which is determined by the relative motion and

the temporal sampling rate. These results are useful in identifying the most

likely con�gurations for occlusion ambiguities in a known object.

Looking beyond model-based tracking, there is increasing interest in lay-

3.4. THE EXISTENCE OF VISIBILITY ORDERS 69

ered representations for computer vision, because of their potential to sim-

plify the 3D description of the world. Recently, several algorithms have been

proposed for building layered descriptions of a scene from a single image or

a motion sequence [41, 11, 67]. The results in this section provide general

conditions under which a layered representation could be expected to exist,

for a given type of moving object.

3.4.3 Occlusion Events and Global Models

The occlusion graph for an object is a function of its state. A discrete

change in the topology of the graph can be viewed as an occlusion event,

analogous to the visual events introduced by Koenderink and Van Doorn [31].

These events partition the con�guration (state) space into hypervolumes over

which the occlusion graph is constant. The state space partition is called the

occlusion meta-graph for the object. The state partition in Fig. 3.2 can now

be recognized as the meta-graph for the two �nger model. Moreover, the

visibility ordering rules for the hand described in Sec. 3.2.3 are, in fact,

testing for occlusion events. These tests can be done e�ciently in Cartesian

space, in spite of the large number of DOFs, by exploiting the kinematic

model.

The construction of an occlusion meta-graph for a two link planar mech-

anism is illustrated in Fig. 3.13. The 2 DOF state space is partitioned into

three types of regions for which the occlusion graph is constant. The values

of �1 can wrap around from �� to �, but �2 is bounded away from both

extremes, due to noninterpenetration. Each state is restricted to an inter-

val of size 2�� between frames. The construction technique is analogous to

obstacle growing in the con�guration space approach to manipulator path

planning [8]. In general, the hypervolumes will be n dimensional regions

bounded by curved surfaces.

The two link meta-graph shares with Fig. 3.2 the property that trajec-

3.5. DISCUSSION 71

3.5 Discussion

The self-occlusion of articulated objects can be modeled by a layered template

representation, which is updated over time by means of a kinematic model.

Layered representations are constructed from visibility ordered templates,

and practical ordering algorithms can be obtained from the object kinematics.

Window functions mask templates on the basis of the visibility order,

leading to a direct minimization-based solution to self-occluding motion. By

analyzing the structure of the window functions in the objective function, a

simple algorithm for Jacobian computation is obtained.

The existence properties of the occlusion representation depend on the

lack of occlusion ambiguities between pairs of rigid links. These existence

results establish the applicability of the tracking framework to arbitrary ar-

ticulated objects.

72 CHAPTER 3. TRACKING SELF-OCCLUDING OBJECTS

Chapter 4

Hand Tracking Experiments

The kinematicmodels and tracking algorithms presented in Chpt. 2 were used

to construct a real-time articulated object tracking system, called DigitEyes.

Two hand tracking experiments using the DigitEyes system are reported

in this chapter, along with an o�-line experiment in tracking self-occluding

motion. These experiments validate the model-based tracking framework

presented above, and demonstrate the potential of 3D human sensing, at

frame rates of up to 10 Hz, using currently available computer hardware.

All of these results are the �rst of their kind, demonstrating real-time high

DOF tracking of hands using natural imagery, and with nontrivial amounts

of self-occlusion.

The chapter begins with a description of the experimental objectives of

the DigitEyes implementation, followed by a detailed discussion of its soft-

ware architecture. This architecture made it possible to construct on-line

and o�-line versions of the system from the same basic set of modules. Next,

the computational cost of hand tracking in DigitEyes is analyzed, and the

special hardware used to achieve real-time performance is discussed. Fol-

lowing this, the �rst real-time experiment, tracking a 27 DOF hand model

with two cameras, is presented. This result constitutes the �rst experimental

demonstration of 3D high DOF tracking of unmarked, unadorned hands. In

73

74 CHAPTER 4. HAND TRACKING EXPERIMENTS

the second experiment, a simple 3D cursor user-interface was developed and

tested using the DigitEyes system. Finally, experimental results are given

for o�-line tracking of two �ngers in the presence of self-occlusions.

4.1 Experimental Objectives

The tracking experiments in this chapter were designed with two purposes

in mind. The �rst was to validate the model-based tracking framework de-

scribed in Chpts. 2 and 3 on real hand images. The DigitEyes real-time

tracking system was indispensable in this task, as it made it possible to con-

duct experiments with millions of images in a reasonable amount of time.1

Real-time hand tracking with one and two cameras provided experimental

validation of the kinematic models and estimation framework, and a sep-

arate o�-line tracking experiment tested the additional representations for

self-occlusion. The second experimental goal was to evaluate the potential

usefulness of vision-based hand tracking in applications. This was accom-

plished by applying the DigitEyes system to the 3D cursor user-interface

problem, described in Sec. 4.3.4.

The two types of errors that are important in tracking are residual errors

and state errors. Residual errors measure the di�erence between the input

image and the image predicted by the state estimate, acting through the

model. The residuals are de�ned mathematically by Eqns. 2.10, 2.17, and

2.19, and the state estimate minimizes them by de�nition. Backprojecting

the estimated hand pose onto its associated image makes it possible to visu-

ally assess the degree of �t between the estimate and the measurement. A

qualitative visual agreement between the back-projected model and the im-

age is the most basic requirement for tracking performance, and is the basis

1The DigitEyes system was in daily operation for over a year. Assuming that the system

ran for an hour each weekday at a sampling rate of 10 Hz, it follows that approximately

10 million images were processed!

4.2. SOFTWARE ARCHITECTURE 75

for experimental validation in this thesis.

State error, on the other hand, is the di�erence between the tracker output

and the ground truth for the physical system being tracked. It is synonymous

with the accuracy of the tracker. Determining ground truth motion for a

complicated object like the hand is extremely di�cult, as the lack of a good

noninvasive sensor is one of the motivations of this work. Although state

variables such as joint angles provide a compact description of hand motion,

obtaining ground truth for them is probably impractical. The most promising

ground truth measure, discussed in more detail in Sec. 6, is to attach LEDs

to the hand in a way that doesn't interfere with DigitEyes, and measure their

absolute spatial position using stereo.

Track life [34] is a dynamic property of the estimator closely linked to

the residual error. It refers to the length of time (number of frames) that

the tracker remains on target, as measured by its ability to extract useful

measurements from each image. All of the tracking algorithms in this thesis

use the projected kinematic model to segment the input image into features

or templates. Track loss occurs if the residual error grows so large that the

model no longer projects to the correct parts of the image. When track loss

occurs, the estimator loses correspondence with the image and the state error

can grow arbitrarily large. However, the residual error in each frame may be

small enough to prevent track loss, and yet the state error may remain large

due to model error or singularities. Thus track life, like the residual error, is

a weaker criteria than tracking accuracy.

4.2 Software Architecture

The DigitEyes system was designed with a modular software architecture,

that makes it possible to quickly assemble individualized tracking systems

for both videotaped and real-time imagery, using both templates and point

and line features. The system runs on Sun and SGI workstations, as well

76 CHAPTER 4. HAND TRACKING EXPERIMENTS

Kinematics Feature

Solver

[][] ...

=Dq

Display

Interface

Figure 4.1: Software architecture for tracking system.

as on a special board for real-time image processing, called IC40. All of the

software is written in C. The major components of the software architecture

are shown in Fig. 4.1. The interface and display modules were written for an

SGI Indigo 2 workstation, using GL and the FORMS user-interface toolkit.

The solver and image processing components will run on all three hardware

platforms.

The kinematics module is the heart of the system. Its primary data

structure is a tree of link frames connected by kinematic transforms. The tree

structure captures the topology of the kinematic model, and represents the

transformations between the links, along with their kinematic parameters,

features, and shape models. The tree is constructed automatically from

4.2. SOFTWARE ARCHITECTURE 77

an initialization �le, such as the one in Appendix A, and is made up of

base and chain nodes. Base nodes, such as the palm frame in the hand

model, have a spatial transform and multiple children. Chain nodes have

Denavit-Hartenberg transforms and a single child. Arbitrary branched, open,

kinematic chains can be constructed from these two elements. Each node also

contains a set of kinematic parameters, divided into state variables and �xed

parameters. In a static node, all of the parameters are �xed. Active base

nodes have seven state variables and active chain nodes have one. Each

node may contain geometry, in which case it has both feature points and a

polygonal solid model de�ned with respect to a shape frame.

Functions in the kinematics module descend the link tree recursively,

updating the spatial position of the link and shape frames, and computing

Jacobians with respect to the active variables. The output of this positioning

operation is used in two ways. First, the Jacobian matrix used for estimation

is built from columns distributed through the link tree. It combines with the

feature residuals to form a linear system. Second, for display purposes, the

positioned shape models can be rendered on an SGI workstation from a user-

controlled viewpoint.

There are two types of feature modules that interface with the same

kinematics module. For tracking experiments with point and line features,

a single 3D feature point in each frame combines with the point and line

residuals. The Jacobian matrix is constructed from the contributions of each

of these points. For experiments with templates, points sampled from the

template plane form the Jacobian that is used during gradient descent. The

same basic software for computing point Jacobians is used in both cases.

The interface gives the user control over the display of the estimated

model. Since each shape frame is positioned using the estimated state, ren-

dering these shapes on a graphics workstation gives visual feedback of the

estimator's performance. Models can be rendered from the same viewpoint

as the calibrated camera, or from a viewpoint speci�ed interactively by the

78 CHAPTER 4. HAND TRACKING EXPERIMENTS

user. The 3D cues provided by the shaded model, rendered from the cali-

brated camera viewpoint, make it possible to visually gauge registration and

state errors simultaneously. Additional control over the solver and image

processing is available in the interactive version of the system. The inter-

face to the interactive system forms the basis of the 3D cursor application

described in Sec. 4.3.4.

4.3 Real-Time Hand Tracking

The DigitEyes system is the �rst real-time 3D hand tracking system based on

video images of unmarked, unadorned hands. Its successful performance can

be attributed to two factors: the use of kinematic models to constrain image

interpretation and ameliorate the e�ects of noise, and the use of a high image

sampling rate to minimize the size of the search space, and make linearized LS

methods feasible. The achievement of high image sampling rates is one of the

most challenging system-level issues in constructing a real-time vision-based

tracking system [2]. Its feasibility depends on two factors: the computational

requirements of the estimation problem, and the delay involved in getting the

images into processor memory. These issues are taken up in the next two

sections. They are followed by experimental real-time tracking results for a

full hand model using two cameras, and a 3D cursor user-interface using a

single camera.

4.3.1 The DigitEyes System

The DigitEyes real-time tracking system is based on the feature alignment

approach of Sec. 2.5. Point and line features have two computational advan-

tages that make real-time tracking possible on a conventional microprocessor:

� They can be detected by searching along lines in the image, removing

the quadratic cost of area-based image processing. This eliminates the

4.3. REAL-TIME HAND TRACKING 79

need for special hardware to do correlations, for example.

� Each feature contributes one number to the residual vector, and a col-

umn to the Jacobian. This leads to small matrices which can be pro-

cessed quickly.

This section describes the hardware implementation of the DigitEyes system

and discusses its computational requirements.

Intensity

pixels
Image
Derivative

Figure 4.2: A single link tracker is shown along with its detected boundary

points. One slice through the �nger image of a �nger is also depicted. Peaks
in the derivative give the edge locations.

Fast Feature Detection

A fast feature detection algorithm was developed for images without signi�-

cant amounts of self-occlusion. It is based on searching images along slices,

lines that are perpendicular to the projected model cylinder axis. As a result

of the high sampling rate, the actual �nger phalange position in the image

will be close to the model projection, and will be intersected by several slices.

For each slice, the derivative of the 1D image pro�le is computed. Peaks in

the derivative with the correct sign correspond to the intersection of the slice

with the �nger silhouette. The extracted intensity pro�le and peak locations

80 CHAPTER 4. HAND TRACKING EXPERIMENTS

for a single slice are illustrated in Fig. 4.2. Line �tting to each set of two

or more detected intersections produces the feature for the link. The resid-

ual follows as the perpendicular distance from the detected feature line to a

point on the base of the projected axis. If only one silhouette line is detected

for a given link, the cylinder radius can be used to extrapolate the axis line

location. Currently, the length of the slices (search window) is �xed by hand.

Finger tip positions are measured through a similar procedure.

Computational Requirements

The cost of computing the forward kinematics, residual Jacobian, and state

estimate determine the processing requirements for hand tracking. The for-

ward kinematics computation is a sequence of matrix multiplications whose

cost is determined by the kinematic topology. The computational costs of

the residual Jacobian and state estimate are a function of the size of the

feature and state spaces. They consist of the Jacobian matrix computation,

using the technique of Sec. 2.4.4, and a linear system solution.

Component Time (ms/iter.) Details

Overlay Display 10.0

Forward Kinematics 18.0

Feature Detection 46.2 2.46 ms/link feature

1.85 ms/tip feature

State Estimation 72.0 Jacobian: 35 ms
Linear Solve: 37 ms

Total Time 146.0

Table 4.1: Computational cost (measured in milliseconds) associated with the
main components of hand tracking for a full hand model. Overlay display

refers to drawing model backprojections as overlays on live video.

Table 4.1 shows the average computation time for the components of the

4.3. REAL-TIME HAND TRACKING 81

hand tracking system described above. These costs were measured for a full

hand model of 36 link frames, 28 states, and 35 residuals, running on a 68040

CPU (the IC40 board described below.) The measurements were obtained

by timing with a stopwatch. The total computation time requirements for

a single iteration of the estimator, 146 ms, lead to a sampling rate of 6.66

Hz for the full hand. For contrast, the required computation time was also

measured for a 6 DOF hand model, in which the palm pose was estimated

using measurements from three �ngers. In this case, the total cost was 67

ms/iter., for an sampling rate of nearly 15 Hz.

Hardware Architecture

Most modern workstations have the computational power required for real-

time hand tracking, as Table 4.1 illustrates. What workstations lack, how-

ever, is the ability to transfer images into working memory at high speeds,

due to the limitations of system bus bandwidths. While this will eventually

improve, some specialized hardware is currently required to reduce image

transfer time.

The DigitEyes system is built around a special board for real-time im-

age processing, called IC40, manufactured by Eltec, Inc. Each IC40 board

contains a 68040 CPU, 5 MB of dual-ported RAM, a digitizer, and a video

generator. The key feature of this system is the on-board digitizer, which can

write directly to CPU memory, thereby removing the bus bottleneck present

in most workstation-based systems.2 The IC40 can deliver digitized images

to the processor memory at video rate with no computational overhead. An-

other important attribute of the IC40 is its video generator, which is used

to overlay backprojections of the estimated hand con�guration on the input

video signal. The overlay makes possible on-line visual assessment of the

2I am grateful to Omead Amidi and Yuji Mesaki for their help in obtaining the IC40

and making it operational.

82 CHAPTER 4. HAND TRACKING EXPERIMENTS

IC40 0

IC40 1

VMEBus

Sun 4 SGI Iris
Ethernet

Display

Figure 4.3: The hardware architecture for the stereo version of the DigitEyes

hand tracking system.

quality of the model registration. Ordinary C code is cross-compiled using

gcc on a Sun, and down-loaded to the board for execution. The IC40 does

not run any operating system in the DigitEyes implementation.

In the single camera version of the system, all image processing and state

estimation is done on the IC40 board, and state estimates are communicated

to a Sun workstation over the VME bus. The Sun passes the estimated

states to a Silicon Graphics Indigo 2 workstation through a TCP/IP connec-

tion. The Indigo 2 asynchronously renders and displays the model using the

estimated state. The overall system organization is shown in Fig. 4.3.

In the stereo implementation, there is an IC40 board for each camera.

The total computation is divided into two parts: feature extraction and state

estimation. Feature extraction is done in parallel by each board, then the

extracted features are passed over the VME bus to the Sun workstation. Both

IC40 boards are memorymapped on the Sun, and a simple semaphore is used

to synchronize feature acquisition between them. A solver module running

on the Sun combines the two feature vectors, as described in Sec. 2.5.5,

and solves the resulting linear system to obtain the state estimate. Each

board has its own camera model, and uses it to compute its own forward

kinematics. The estimated state is passed back to each board at the end

4.3. REAL-TIME HAND TRACKING 83

Figure 4.4: Experimental test bed for the DigitEyes system.

of the estimation cycle, and is used to reposition the feature trackers. The

experimental testbed for hand tracking is depicted in Fig. 4.4.

4.3.2 Algorithm Summary

The feature alignment-based tracking algorithm described in Sec. 2.5 is the

basis for the DigitEyes real-time tracking system. This section summarizes

the main steps in the algorithm and its �xed parameters, along with error

sources that impact tracking performance.

Table 4.2 summarizes the �xed parameters in the feature alignment track-

84 CHAPTER 4. HAND TRACKING EXPERIMENTS

ing algorithm. These model and camera parameters are determined through

the calibration process of Secs. 2.2.3 and 2.3. The initial state is set for each

application and the user is required to place their hand in the known con�g-

uration prior to tracking. The sampling rate is a function of the complexity

of the model, and will be described in more detail below. The weights for

the Gauss-Newton algorithm (see Sec. 2.5.3) were set empirically and used

in all of the experiments in Sec. 4.3.

Parameters Description

Camera Model 11 extrinsic (pose) and intrinsic (image scale

and origin) parameters

Kinematic Model Joint axes, link lengths, and anchor points

Initial State Starting point for tracking, q0
Sampling Rate Frequency at which images are processed

Feature Window Size Size of slice in search for �nger edges, set at 20 pixels

Gauss-Newton Weights Stabilizes quaternion (1.0), translation (10.0), and
joint angle (1000.0) state estimates

Table 4.2: Table of �xed parameters for feature alignment tracking algorithm.

Tracking begins with the user's hand in the initial con�guration. This is

aided by overlaying the projected hand model with the video image during the

positioning stage. Once the system is initialized, tracking proceeds through

the following steps:

1. Update link frame positions with respect to the camera, using the current

state estimate.

2. Project link frames into image through camera model and initialize

search windows.

3. Process image slices and �nd edge points.

4.3. REAL-TIME HAND TRACKING 85

4. Compute line and tip feature measurements from edge points.

5. Compute residual Jacobian for each measured feature.

6. Compute state correction through pseudo-inverse (Eq. 2.22) by solving

the linear system.

7. Update the state estimate.

The algorithm outlined above was used in all of the real-time exper-

iments in this thesis. Accurate tracking requires accurate kinematic and

camera models and a su�cient number of iterations of the estimation al-

gorithm between frames. Model accuracy ensures that the residual minima

will correspond to the minimum error state, while adequate iterations ensure

that the minima will be reached for each frame. Track life for the feature

alignment algorithm is determined by the alignment between the image and

model projections in each frame. Track loss occurs when the search window

constructed around a projected link of the model fails to contain the correct

feature. Tracking accuracy impacts track life through the size of the resid-

ual. The residual grows with the distance between the projected model and

the detected features. If it becomes too large, features may lie outside their

associated search windows. Excessive hand velocity can also lead to track

loss, as the feature displacement in the image between frames may exceed

the search window size. This maximum displacement is determined by the

hand velocity in conjunction with the sampling rate.

4.3.3 Whole Hand Tracking

The most ambitious tracking experiment attempted with the DigitEyes sys-

tem was full 27 DOF hand tracking using two cameras. Two Sony XC-75

cameras were positioned 1.5 feet apart with optical centers verging near the

86 CHAPTER 4. HAND TRACKING EXPERIMENTS

Camera 0 View Camera 1 View

Figure 4.5: Three pairs of hand images from the continuous motion estimate
plotted in Figs. 4.7 and 4.8. Each stereo pair was obtained automatically

during tracking by storing every �ftieth image set to disk. The samples
correspond to frames 49, 99, and 149.

4.3. REAL-TIME HAND TRACKING 87

Camera 0 View Bottom View

Figure 4.6: Estimated hand state for the image samples in Fig. 4.5, rendered

from the Camera 0 viewpoint (left) and a viewpoint underneath the hand

(right).

88 CHAPTER 4. HAND TRACKING EXPERIMENTS

middle of the tracking area, and intersecting the table surface at approxi-

mately 45 degrees. They were both calibrated to the same coordinate frame,

located in the tabletop. The distance from the cameras to the tabletop was

approximately �ve feet. The tracker incorporated the full hand model from

Appendix A. Line and point features from 13 of the 15 �nger phalanges

were employed in tracking. No features were extracted from the proximal

phalanges of the middle two �ngers, due to the impossibility of avoiding oc-

clusions of these features during motion. No features were extracted from the

palm, due to a desire to keep the feature extraction code simple and uniform.

Tracking began with the hand in a pre-arranged position on the tabletop.

Because the hand motion had to avoid occlusions for successful tracking,

the available range of travel was not large. It was su�cient, however, to

demonstrate recovery of articulated DOFs in conjunction with palm motion.

Figure 4.5 shows sample images, trackers, and features from both cameras at

three points along a 200 frame sequence. The sample images were obtained

automatically during tracking by writing every 50th image to disk.3 Figure

4.6 shows the estimated model con�gurations corresponding to these sample

points. In the left column, the estimated model is rendered from the cali-

brated viewpoint of the �rst camera. In the right column, it is shown from

an arbitrary viewpoint, demonstrating the 3D nature of the tracking result.

State estimates were logged by a program running on the Sun. The graphical

model �gures were rendered o�-line, using the logged states.

Close examination of the sample images and backprojected models shows

some of the residual error properties of the tracker. The �rst thing to note is

that the �t is quite good overall, indicating the basic adequacy of both the

measurements and the kinematic model. The most obvious indications of

small errors are misalignments between anchor points and knuckle positions,

and projected and actual joint centers and �nger tips. A more interesting

3Samples obtained at 50 frame intervals were found to capture the most signi�cant

hand poses during tracking.

4.3. REAL-TIME HAND TRACKING 89

0.0 50.0 100.0 150.0 200.0
Frames (100 ms/frame)

-1.0

-0.5

0.0

0.5

1.0

Q
ua

te
rn

io
n

A
ng

le

Palm Rotation

Qw
Qx
Qy
Qz

0.0 50.0 100.0 150.0 200.0
Frames (100 ms/frame)

-50.0

0.0

50.0

100.0

150.0

Q
ua

te
rn

io
n

A
ng

le

Palm Translation

Tx
Ty
Tz

Figure 4.7: Estimated palm rotation and translation for motion sequence of
entire hand. Qw-Qz are the quaternion components of rotation, while Tx-Tz

are the translation. The sequence lasted 20 seconds.

error is visible in the images from frame 99. From the shading cues in the

images, it is clear that the PIP joint4 on the fourth (little) �nger is strongly

bent. Yet examination of the estimated model pose, particularly in the syn-

thesized view from under the palm, shows that the estimated PIP joint angle

is zero, and the estimator placed all of the bending at the MCP joint.

This error is the result of the fourth �nger being in a singular con�gura-

tion, in which none of the line features give information about its pose. In this

case, only the tip position contains information about the degree of bending,

and the system is free to assign angles among all three joints to achieve it.

4See Fig. 2.4 for the joint labels.

4.3. REAL-TIME HAND TRACKING 91

Figure 4.9: A sample graphical environment for a 3D mouse. The 3D cursor

is at the tip of the \mouse pole", which sits atop the ground plane (in the
foreground, at the right). The sphere is an example of an object to be
manipulated, and the line drawn from the mouse to the sphere indicates its
selection for manipulation.

4.3.4 3D Mouse User-Interface

Hand motion estimated in real-time by the DigitEyes system using a sim-

pli�ed hand model was employed to drive a 3D mouse interface [46, 47].

Figure 4.9 shows an example of a simple 3D graphical environment, consist-

ing of a ground plane, a 3D cursor (drawn as a pole, with the cursor at the

top), and a spherical object (for manipulation.) Shadows generate additional

depth cues. The interface problem is to provide the user with control of the

cursor's three DOFs, and thereby the means to manipulate objects in the

environment.

In the standard \mouse pole" solution [71], the 3D cursor position is

controlled by clever use of a standard 2D physical mouse. Normal mouse

motion controls the base position of the pole on the ground plane. Depressing

92 CHAPTER 4. HAND TRACKING EXPERIMENTS

one of the mouse buttons switches reference planes, causing mouse motion

in one direction to control the pole (cursor) height. By switching between

planes, the user can place the cursor arbitrarily. Commanding continuous

motion with this interface is awkward, however, and tracing an arbitrary,

smooth space curve is nearly impossible. DigitEyes was used to develop a

3D virtual mouse, that permitted simultaneous hand-based control of the

cursor's DOFs.

This application of the DigitEyes system served two purposes. First, it

provided a qualitative test of the system's ability to recover 3D information

using a single image sequence. Second, it demonstrated the capability of the

tracking framework to provide adequate sensing for a practical application.

Experience with the interface suggests areas for future improvement of the

system.

In the DigitEyes solution to the 3D mouse problem, the 3 input DOFs

are derived from a partial hand model, which consists of the �rst and fourth

�ngers of the hand, along with the thumb. The palm is constrained to lie in

the plane of the table used in the interface, and thus has 3 DOF. The �rst

�nger has 3 articulated DOFs, while the fourth �nger and thumb each have

a single DOF allowing them to rotate in the plan of the table (abduct). The

hand model is illustrated in Fig. 4.10. A single camera oriented at approxi-

mately 45 degrees to the table top acquires the images used in tracking. The

palm position in the plane controls the base position of the pole, while the

height of the index �nger above the table controls the height of the cursor.

This particular mapping has the important advantage of decoupling the con-

trolled DOFs, while making it possible to operate them simultaneously. For

example, the user can change the pole height while leaving the base position

constant. The fourth �nger and thumb have abduction DOFs in the plane,

and are used as \buttons". The cost of estimating the reduced hand model

was measured at 96.4 ms/iter. by timing with a stopwatch (see Sec. 4.3.1.)

This gives an estimation rate of 10 Hz.

4.3. REAL-TIME HAND TRACKING 93

Figure 4.10: The hand model used in the 3D mouse application is illustrated
for frame 200 in the motion sequence from Fig. 4.12. The vertical line shows

the height of the tip above the ground plane. The input hand image (frame
200) demonstrates the �nger motion used in extending the cursor height.

Figures 4.11 { 4.13 give experimental results from a 500 frame motion

sequence in which the estimated hand state was used to drive the 3D mouse

interface. Figures 4.11 and 4.12 show the estimated hand state for each frame

in the image sequence. Frames were acquired at 100 ms sampling intervals.

The pole height and base position derived from the hand state by the 3D

mouse interface are also depicted in Fig. 4.12. The motion sequence has four

phases. In the �rst phase (frame 0 to 150), the user's �nger is raised and

lowered twice, producing two peaks in the pole height, with a small variation

in the estimated pole position. Second, around frame 150 the �nger is raised

again and kept elevated, while the thumb is actuated, as for a \button event".

The actuation period is from frame 150 to frame 200, and results in some

change in the pole height, but negligible change in pole position. Third,

from 200 to 350, the pole height is held constant while the pole position is

4.3. REAL-TIME HAND TRACKING 95

0.0 100.0 200.0 300.0 400.0 500.0
Frames (100 ms/frame)

0.0

50.0

100.0

150.0

200.0

D
is

ta
nc

e
(m

m
)

Palm Translation

Tx
Ty
Tz

0.0 100.0 200.0 300.0 400.0 500.0
Frames (100 ms/frame)

-200.0

-100.0

0.0

100.0

200.0

300.0

W
or

ks
pa

ce
 D

is
ta

nc
e

Mouse Pole Interface

Mouse Pole Height
Mouse Pole X
Mouse Pole Y

Figure 4.12: Translation states for mouse pole hand model are given on the
left. The Y axis motion is constrained to zero due to tabletop. On the right
are the mouse pole states, derived from the hand states through scaling and a
coordinate change. The sequence events goes: 0-150 �nger raise/lower, 150-
200 thumb actuation only, 200-350 base translation only, 350-500 combined

3 DOF motion.

face:

� Sampling rate

� Sensitivity

� Latency

The quality of the interface as a whole seemed to depend on another set of

three properties, which are closely linked to the tracker attributes above.

� Maximum hand speed

96 CHAPTER 4. HAND TRACKING EXPERIMENTS

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.13: The mouse pole cursor at six positions during the motion se-

quence of Fig. 4.11. The pole is the vertical line with a horizontal shadow,

and is the only thing moving in the sequence. Samples were taken at frames
0, 30, 75, 260, 300, and 370 (chosen to illustrate the range of motion).

4.3. REAL-TIME HAND TRACKING 97

� Transient DOF coupling

� Resolution

To illustrate the impact of the tracker's performance on an application,

each of the above issues is examined in turn. The maximum possible speed

of the user's hand across the tabletop is a function of the sampling rate of

the estimation algorithm, in relation to the error surface properties of the

residual. In the speci�c case of the virtual mouse interface, the tracker could

tolerate hand motions of about 2.5 in/sec before track loss began. This was

measured experimentally by timing repeated hand translations in the plane,

keeping the tracker on the edge of convergence by observing the real-time

overlay of the backprojected model and images.

Transient coupling between DOFs is a second factor that is a�ected by

the sampling rate. State coupling is a natural consequence of the kinematic

constraints which make tracking possible. These constraints lead to transient

e�ects in the estimator, however, that can negatively impact performance.

An example of transient coupling occurs around frame 150 in the Button

State and Mouse Pole Interface plots from Figs. 4.11 and 4.12. When the

thumb is actuated for a button event, the pole height drops initially, and

then rises back to its previous level over the course of about 20 frames.

This behavior is the result of an initial tendency of the estimator to spread

residual error over all of the states that can reduce it. Only after the thumb

has had time to rotate, and absorb most of its residual error, are the other

residuals able to reassert their control over their own DOFs. The duration

of these transient e�ects is primarily a result of the sampling rate. More

iterations/sec. make the estimator \sti�er," and reduce the e�ect of these

disturbances. Interestingly, very similar experimental observations have be

made in the domain of robot control [30].

The last property of the interface, the resolution with which the cursor

position can be controlled, is largely a function of the estimator sensitivity.

98 CHAPTER 4. HAND TRACKING EXPERIMENTS

As described in Sec. 2.5.3, the sensitivity of a state varies with position in

the state space. The large scale e�ect of this is that the ease of use of the

interface depends strongly on the palm orientation relative to the camera.

Consider rotating the palm on the table as the pole height is varied. The

orientation at which the plane of the �nger contains the camera is a singular

con�guration, and pole height becomes extremely di�cult to measure. The

sensitivity of the estimator to the �nger motion decreases as this singularity

is approached. The e�ective resolution in the cursor position is determined

by the state sensitivity. The more sensitive the state, the larger the range

of image displacements that are produced by a given range of state space

motion. This in turn leads to a larger resolution in state space, and greater

ability to control the cursor at a �ne level of detail.

The e�ects of latency were not studied in detail for the virtual 3D mouse

problem, as they were not extremely signi�cant. Latency refers to the time

delay between hand motion and the response of the interface. Long latency

times make control of the interface impossible. As a result of the virtual 3D

mouse interface design, the total latency was determined by the estimator

cycle time, the communication delay to the Indigo 2, and the model rendering

time. These last two additional e�ects added around 30 ms to the 100 ms

cycle time. The e�ect of the total latency was noticeable, but did not make

the cursor uncontrollable.

4.4 Tracking Self-Occluding Hand Motion

The representations and algorithms for self-occluding motion described in

Chpt. 3 were implemented in an o�-line version of theDigitEyes system. This

section gives a complete summary of the resulting tracking algorithm, and

presents experimental results for a two �nger motion sequence with signi�cant

self-occlusion.

4.4. TRACKING SELF-OCCLUDING HAND MOTION 99

4.4.1 Algorithm Summary

The template-based tracking algorithm for self-occluding motion described in

Chpt. 3 is summarized along with a discussion of the primary error sources.

Table 4.3 lists the �xed parameters in the template-based tracking algorithm.

In addition to the camera and kinematic models, a template model must be

speci�ed for each link. These templates are obtained manually from a set of

reference images before tracking begins.

Parameters Description

Camera Model 11 extrinsic (pose) and intrinsic (image scale
and origin) parameters

Kinematic Model Joint axes, link lengths, and anchor points

Template Model Su�cient views for each link in object

Initial State Starting point for tracking, q0
Sampling Rate Frequency at which images are processed

Step size Scales state correction in gradient-descent algorithm.

Table 4.3: Table of �xed parameters for feature alignment tracking algorithm.

Tracking begins with the user's hand in the initial con�guration. This is

aided by overlaying the projected hand model with the video image during the

positioning stage. Once the system is initialized, tracking proceeds through

the following steps:

1. Update link frame positions with respect to the camera, using the current

state estimate.

2. Project link templates into image through camera model.

3. Segment image pixels, assigning them to templates.

4. Compute residual and Jacobian for each segmented pixel.

100 CHAPTER 4. HAND TRACKING EXPERIMENTS

5. Compute state correction through gradient-descent minimization (Eq. 2.12.)

6. Update the state estimate.

The accuracy of the tracking algorithm depends, as in Sec. 4.3.2, on the

accuracy of the kinematic and camera models. In addition, errors in the tem-

plate models, such as unexpected shading variations, can cause the minimum

residual state to di�er from the correct state, degrading the tracking accu-

racy. A su�cient number of iterations of the estimation algorithm between

frames is also required for accurate tracking. Track life in the template-based

algorithm is determined by the shape of the state space error surface, which

is minimized during estimation. For each image, there is a region of conver-

gence (ROC) centered around the minimum residual state. Track loss occurs

if the starting point for minimization lies outside this ROC in any frame.

This could happen as a result of errors in the camera, kinematic, or tem-

plate models. It could also occur if the hand velocity between frames is too

large, resulting in a state displacement outside of the ROC. The maximum

state displacement is determined by the hand velocity in conjunction with

the sampling rate.

In addition to the basic requirements for template-based tracking de-

scribed above, there are four necessary conditions for tracking self-occluding

objects:

1. There are no points in the state space where the occlusion properties

change instantaneously. This ensures that all regions of occlusion are

separated by disjoint regions.

2. The sampling rate is high enough to prevent occlusion ambiguities. The

product of the sampling rate and maximum state velocity must be less

than the minimumdistance through a disjoint region of the state space.

When this condition is met, the disjoint regions can be grown by the

motion interval without bringing them into contact.

4.4. TRACKING SELF-OCCLUDING HAND MOTION 101

3. The composite Jacobian formed from all camera viewpoints must be

full rank. This ensures that measurements are available for each state

in the linearized system. If this condition is not met, there will be no

estimates for some states, and any occlusion properties that depend

on these states cannot be determined. This could cause the visibility

order prediction to fail.

4. The occlusion graph for the tracked object must be acyclic at all points

in the state space.

If these conservative requirements are met, the prediction of the visibility

order will succeed for all possible motions of the object. In practice, there

may be points in the state space where one or more of these conditions are

violated. For example, occlusion ambiguities arise in hand tracking during a

gesture like \stop", as discussed in Sec. 3.4.1. In practice it may be necessary

to use other information, such as the velocity of the object, to disambiguate

these cases.

4.4.2 Two Finger Tracking Results

The main representations and algorithms for self-occluding motion described

in Chpt. 3 have been implemented in an o�-line version of the DigitEyes

system. This section presents the �rst experimental results using this tracker,

for a two �nger motion sequence with signi�cant self-occlusion, depicted in

Fig. 4.14.

In the sequence, my index �nger curls into my palm while my hand and

remaining �ngers are held still. An 80 frame sequence was digitized from

videotape and sampled for an e�ective frame rate of approximately 15 Hz.

This resulted in an average �nger tip displacement between frames of about

three pixels. The camera was positioned at approximately 45 degrees to the

table top, facing the palm. As a result of this camera position, the �rst �nger

102 CHAPTER 4. HAND TRACKING EXPERIMENTS

Figure 4.14: Sample input images and associated state estimates for frames 0,
13, 30, and 75 in the motion sequence. The two �nger hand model is rendered

with respect to the calibrated camera model using the estimated state. The
overlays show the template boundaries and projection of cylinder center axes.

These frames were selected for their representative self-occlusions.

4.5. SUMMARY 105

error, photometric template model error, and template shape error. Of these,

the last two were noticeable in the residual, and warrant further study.

These results demonstrate the potential of the direct template registra-

tion approach to tracking self-occluding objects. From a classical feature

detection perspective, the images in the sequence are quite di�cult. All of

the phalanges of the middle �nger are partially occluded during some por-

tion of the motion sequence, and the index �nger is silhouetted against the

�ngers and palm for most of its motion. A signi�cant advantage of the

window-based approach is that it can tolerate any amount of occlusion and

continue to extract useful information from the pixels that are visible. The

successful tracking of this complicated motion testi�es again to the power of

the kinematic model in constraining the interpretation of the image.

All of the experiments in this chapter employed a black cloth backdrop

to ensure high contrast between the hand and its background. Invariance to

background was not addressed, as it is believed to be less important than

the kinematic and self-occlusion issues which were the focus of this thesis. In

practice, applications can be designed with a constrained background, as the

3D virtual mouse interface demonstrates. However, a background template

can be added to the framework tested in this section, making it possible to

exploit a �xed background image in tracking.

4.5 Summary

This chapter describes experimental results in hand tracking, both in real-

time and using o�-line image sequences. Two algorithms were tested: the line

and point feature-based algorithm of Sec. 2.5, and the layered template algo-

rithm for self-occluding motion described in Chpt. 3. The presented results

include the �rst experimental demonstration of 27 DOF visual tracking, and

the �rst tracking results for articulated motion with signi�cant amounts of

occlusion. All experiments were conducted with natural images of unmarked

106 CHAPTER 4. HAND TRACKING EXPERIMENTS

hands.

Chapter 5

Previous Work

Research in human motion analysis spans a wide variety of disciplines from

biomechanics to human-computer interaction and virtual reality, from com-

puter vision to computer graphics. Previous work in this area can be clas-

si�ed along three overlapping lines. The �rst body of work, which includes

this thesis, is concerned with 3D analysis of human motion. It is distinct

from a second body of work in 2D gesture recognition. This work is con-

cerned solely with the mapping from image sequences to a set of discrete

classes. In principle, the 3D tracking approach can be applied to this prob-

lem as well [15], but work in this area often takes a learning approach and

tries to avoid 3D model speci�cation. A third body of work develops special

purpose algorithms for human sensing applications. It is not concerned with

developing general frameworks, as is the case in the previous two areas.

5.1 3D Motion Analysis

In 3D tracking approaches, a model of the articulated object is employed to

constrain image interpretation [50, 48, 47, 29, 32, 39, 33, 15, 72, 44, 23, 42].

A second class of 3D analysis problems attempt to recover both 3D structure

and motion (or pose) simultaneously [24, 57, 68, 45]. This latter class is a

107

108 CHAPTER 5. PREVIOUS WORK

signi�cant departure from the approach of this thesis, and won't be consid-

ered in detail. Since none of the articulated tracking work prior to this thesis

dealt explicitly with self-occlusions, the comparison in these sections will be

concerned only with the use of kinematics to provide geometric constraints

in tracking. Connections between Chpt. 3 and other work on occlusion are

described later.

The two earliest systems for visual human motion analysis, by O'Rourke

and Badler [42] and David Hogg [23], approached model-based recovery of

human motion using the respective AI search techniques of constraint prop-

agation and heuristic search of a discretized state space. Both works stand

out in the complexity of the model constraints they applied to the tracking

problem. O'Rourke's system was capable of incorporating occlusion and rigid

body noninterpenetration constraints in pose determination. Hogg's system

also included postural models.

The treatment of occlusion constraints in O'Rourke's system provides

an interesting complement to their role in this thesis. In the example in

his paper, the onset of occlusion is detected at the image level, and then

the model is positioned so as to achieve the occlusion constraint. In that

particular case, the prediction of occlusion from the model would be very

di�cult, as the arm is in a singular con�guration. One could imagine using

the occlusion prediction mechanism in Chpt. 3 to rule out unlikely occlusion

events, reducing the number of possibilities that had to be searched.

Hogg's work is probably the most relevant to this thesis, as it dealt with

motion explicitly and presented results for an image sequence of a walking

�gure that are still impressive by today's standards. From a conceptual

viewpoint, the two biggest distinctions between this work and Hogg's lie in

the kinematic representation and search method. Robotic kinematic models

provide powerful tools for converting articulated tracking into a continuous

estimation problem. These techniques make it possible to handle a much

larger state space and integrate kinematic constraints and image interpreta-

5.2. 2D GESTURE ANALYSIS 109

tion directly.

The idea of applying robotic kinematic models to human motion tracking

was �rst proposed by Yamamoto and Koshikawa [72]. They presented 2D

tracking results for a three DOF system of a human arm and torso. This

work extends the tracking framework in their paper signi�cantly in several

directions: explicit presentation of robot kinematic models based on DH

notation, analysis of singular con�gurations, 3D real-time tracking results,

application to a user-interface domain, and high DOF tracking. Their more

recent publications [29, 32] present o�-line 3D tracking results using two

cameras, following the approach to integrating multiple views described in

Sec. 2.5.5. These results are very interesting, as they provide evidence that

the techniques in this thesis are applicable to body tracking as well.

Works in the area of physics-based modeling have also addressed articu-

lated body motion [65, 39, 44]. One of the applications of deformable models

presented in [65] is 3D tracking of a single �nger from a stereo image se-

quence. Pentland and Horowitz [44] give an example of tracking the motion

of a human �gure using optical
ow and an articulated deformable model. In

a related approach, Metaxis and Terzopoulos [39] track articulated motion

using deformable superquadric models.

Although most researchers working in the gesture recognition area have

pursued 2D approaches, there are a few works that investigate 3D analy-

sis [15, 33]. Dorner describes a system for interpreting American Sign Lan-

guage from image sequences of a single hand in [15]. In her system, the user

wears a glove with di�erent colors to aid in �nger segmentation. Another 3D

approach based on wearing gloves with �ducial points is described in [33].

5.2 2D Gesture Analysis

There has been a large amount of work on applying static and dynamic

gesture recognition approaches to hand imagery. Three representative works

110 CHAPTER 5. PREVIOUS WORK

based on learning approaches are [19, 12, 56]. In [12], Darrell and Pentland

describe a system for learning and recognizing dynamic hand gestures. Their

approach tries to avoid explicit models by building a library of template

models on-line. Work by Segen [56] takes a neural network approach to 2D

hand gesture recognition. Some sample interfaces based on gestural control

of computer graphics models are described. Freeman describes a gesture

recognition system based on orientation histograms in [19]. All of these

systems obtain real-time performance.

Although many frameworks for human motion analysis are possible, an

approach based on full-state 3D tracking has four main advantages. First, by

tracking all of the hand's DOFs, the end-user is provided with the maximum

possible
exibility for interface applications. (See [61, 27] for examples of

interfaces requiring a whole-hand sensor.) In addition, a general modeling

approach based on 3D kinematics makes it possible to track any subset of

hand or body states with the same basic algorithm. Another bene�t of full

state tracking is invariance to unused hand motions. The motion of a par-

ticular �nger, for example, can be recognized from its joint angles regardless

of the pose of the palm relative to the camera. Finally, modeling the hand

kinematics in 3D eliminates the need for application- or viewpoint-dependent

user modeling.

5.3 Application-Speci�c Human Sensing

Many authors have used hand and body images to test 2D tracking and regis-

tration algorithms. Many of these approaches are applicable to user interface

or surveillance domains. A glove-based approach that uses motion parallax

to control a graphical environment is described in [9]. In the domain of hu-

man �gures, two approaches to 2D tracking are [5, 25]. Huttenlocher et. al.

have applied the Hausdor� distance measure to register images of moving

people [25]. In a related e�ort, Baumberg and Hogg [5] describe a real-time

5.4. LAYERED REPRESENTATIONS 111

pedestrian tracking system based on active shape models. Approaches to hu-

man motion analysis based on more invasive approaches, such as mechanical

sensors [74, 7] or active targets [37], have a long history.

5.4 Layered Representations

The layered representation for self-occlusion presented in Chpt. 3 is related to

other work in tracking and motion coding. Layered representations based on

clustering optical
ow are presented in [1, 11, 67]. This work is largely con-

cerned with automatically generating layered, velocity-based representations

of a motion sequence that could serve as a model for coding or recognition.

A coding approach based on global image models is presented in [26]. A

layered representation based on the occluding contours of a single image is

described in [41]. These works are complementary to the approach in this

thesis, which is concerned with making the best use of available models. In

addition, the kinematic representation of self-occlusions is a generalization

of layered representations based on depth ordering in the scene, since it is

designed to exploit orderings within con�guration space.

As a result of modeling self-occlusion in the image plane, tracking can

be formulated as a direct optimization problem over an image-based residual

error. The approach of coupling the image interpretation (feature detection)

problem directly to the model was popularized by deformable models [65]

(including 2D Snakes [28]) and has since been applied to a variety of other

domains [51, 73].

112 CHAPTER 5. PREVIOUS WORK

Chapter 6

Conclusion and Future Work

A vision-based sensor can provide a passive, noninvasive solution to human

motion tracking problems, since it can be located in the user's environment

rather than on their person. To achieve these goals, computer vision algo-

rithms have been developed that can estimate 3D articulated motion from

ordinary intensity images of unmarked hands or bodies at video rates.

This dissertation has presented new results in applying kinematic models

to articulated object tracking. By adopting the representations and tools of

robotics, powerful computational and analytic tools are brought to bear on

the visual tracking problem. Using these techniques, kinematic models are

developed for the hand and incorporated into a real-time tracking system

called DigitEyes. The kinematic model plays an additional role in predicting

visibility orders for tracking self-occluding motion. The resulting tracking

algorithms were tested on natural hand image sequences and applied to a 3D

mouse user-interface problem. These experiments demonstrate the potential

of 3D visual human sensing.

Future Work

� Hand model calibration could be accomplished on-line by adapting

113

114 CHAPTER 6. CONCLUSION AND FUTURE WORK

�xed model parameters in an estimation loop with a longer time con-

stant than state estimation. Model parameters would be initialized to

standard values, and after a period of adaptation would conform to any

user.

� A real-time implementation of the self-occlusion handling tracker would

be extremely interesting. Such a system would allow unconstrained

hand motion during tracking for the �rst time. Such an approach

should be employed with multiple cameras to ensure accurate estima-

tion.

� Ground truth 3D hand data should be obtained to measure the absolute

accuracy of the tracker as a function of the number of cameras. An

initial strategy is to attach LEDs to the palm and track the six DOF

palm motion using the �ngers. This would avoid interference between

the two sensors and provide a base accuracy assessment.

� Alternative window functions should be investigated and their e�ect

on tracker performance should be analyzed.

� It would be interesting to combine the top-down occlusion prediction

from the kinematic model with a bottom-up occlusion analysis stage in

a synergistic approach.

� Applications of the DigitEyes sensor to graphics, puppetry, and user-

interface applications should be developed to improve our understand-

ing of the necessary performance level for real applications.

Appendix A

Whole Hand DH Model

The next page gives the full DH model for my right hand, which was used in

all of the experiments in this thesis.

115

116 APPENDIX A. WHOLE HAND DH MODEL

Frame Geometry � d a � shape (in mm) Next

0 Palm 0.0 0.0 0.0 0.0 x 56.0, y 86.0, z 15.0 1 8 15 22 29

1 �=2 0.0 38.0 ��=2 2
2 0.0 -31.0 0.0 �=2 3

3 q7 0.0 0.0 �=2 4

4 Finger 1 Link 0 q8 0.0 45.0 0.0 Rad 10.0 5

5 Finger 1 Link 1 q9 0.0 26.0 0.0 Rad 10.0 6

6 Finger 1 Link 2 q10 0.0 24.0 0.0 Rad 9.0 7

7 Finger 1 Tip 0.0 0.0 0.0 0.0 Rad 9.0 {

8 �=2 0.0 37.0 ��=2 9
9 0.0 -9.0 0.0 �=2 10

10 q11 0.0 0.0 �=2 11
11 Finger 2 Link 0 q12 0.0 56.0 0.0 Rad 10.0 12

12 Finger 2 Link 1 q13 0.0 27.0 0.0 Rad 10.0 13

13 Finger 2 Link 2 q14 0.0 22.0 0.0 Rad 9.0 14

14 Finger 2 Tip 0.0 0.0 0.0 0.0 Rad 7.0 {

15 �=2 0.0 33.0 ��=2 16
16 0.0 6.0 0.0 �=2 17

17 q15 0.0 0.0 �=2 18
18 Finger 3 Link 0 q16 0.0 53.0 0.0 Rad 9.0 19

19 Finger 3 Link 1 q17 0.0 25.0 0.0 Rad 9.0 20

20 Finger 3 Link 2 q18 0.0 20.0 0.0 Rad 8.0 21

21 Finger 3 Tip 0.0 0.0 0.0 0.0 Rad 7.0 {

22 �=2 0.0 30.0 ��=2 23

23 0.0 26.0 0.0 �=2 24

24 q19 0.0 0.0 �=2 25
25 Finger 4 Link 0 q20 0.0 38.0 0.0 Rad 9.0 26

26 Finger 4 Link 1 q21 0.0 19.0 0.0 Rad 8.0 27

27 Finger 4 Link 2 q22 0.0 17.0 0.0 Rad 7.0 28

28 Finger 4 Tip 0.0 0.0 0.0 0.0 Rad 6.0 {

29 ��=2 15.0 43.0 ��=2 30

30 �� 38.0 0.0 0.0 31

31 q23 0.0 0.0 �=2 32

32 Thumb Link 0 q24 0.0 46.0 ��=2 Rad 14.0 33

33 q25 0.0 0.0 �=2 34

34 Thumb Link 1 q25 0.0 34.0 0.0 Rad 10.0 35

35 Thumb Link 2 q26 0.0 25.0 0.0 Rad 10.0 36

36 Thumb Tip 0.0 0.0 0.0 0.0 Rad 8.0 {

Table A.1: The Denavit-Hartenberg kinematic model for my right hand. It

was calibrated using the procedure of Sec. 2.2.3.

Bibliography

[1] E. H. Adelson. Layered representation for image coding. Technical
Report 181, MIT Media Lab, 1991.

[2] O. Amidi, Y. Mesaki, T. Kanade, and M. Uenohara. Research on an
autonomous vision guided helicopter. In Fifth World Conf. on Robotics
Res., pages 14{11 to 14{22, Cambridge, MA, 1994. SME.

[3] K. N. An, E. Y. Chao, W. P. Cooney, and R. L. Linscheid. Normative
analysis of human hand for biomechanical analysis. Journal of Biome-
chanics, 12:775{788, 1989.

[4] P. Anandan. A computational framework and an algorithm for the mea-
surement of visual motion. International Journal of Computer Vision,
2:283{310, 1989.

[5] A. Baumberg and D. Hogg. An e�cient method for contour tracking
using active shape models. In J. Aggarwal and T. Huang, editors, Proc.
of Workshop on Motion of Non-Rigid and Articulated Objects, pages
194{199, Austin, Texas, 1994. IEEE Computer Society Press.

[6] J. Bergen, P. Anandan, and et. al. Hierarchical model-based motion
estimation. In Second European Conf. on Computer Vision, pages 237{
252, Santa Margherita Liguere, Italy, 1992. Springer-Verlag.

[7] T. Calvert, J. Chapman, and A. Patla. Aspects of the kinematic simula-
tion of human movement. IEEE Computer Graphics and Applications,
pages 41{50, November 1982.

[8] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam-
bridge, MA, 1988.

[9] R. Cipolla, Y. Okamoto, and Y. Kuno. Qualitative visual interpreta-
tion of 3d hand gestures using motion parallax. In IAPR Workshop on
Machine Vision Applications, Tokyo, Japan, December 1992.

117

118 BIBLIOGRAPHY

[10] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press, Boston, MA, 1990.

[11] T. Darrell and A. Pentland. Robust estimation of a multi-layeredmotion
representation. In Proc. of IEEE Workshop on Visual Motion, pages
173{178, Princeton, NJ, 1991.

[12] T. Darrell and A. Pentland. Space-time gestures. In Looking at People
Workshop, Chambery, France, 1993.

[13] J. Denavit and R. Hartenberg. A kinematic notation for lower pair
mechanisms. J. Applied Mechanics, 22:215{221, 1955.

[14] J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice-Hall, Englewood Cli�s, NJ,
1983.

[15] B. Dorner. Hand shape identi�cation and tracking for sign language in-
terpretation. In Looking at People Workshop, IJCAI, Chambery, France,
1993.

[16] O. Faugeras. Three-Dimensional Computer Vision: A Geometric View-
point. MIT Press, Cambridge, MA, 1993.

[17] S. Fels and G. Hinton. Building adaptive interfaces with neural networks:
The glove-talk pilot study. In Proc. of Third Intl. Conf. on Human-
Computer Interaction, pages 683{688. North-Holland.

[18] J. Foley, J. van Dam, S. Feiner, and J. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 1990.

[19] B. Freeman and M. Roth. Orientation histograms for hand recogni-
tion. Technical Report TR-94-03, Mitsubishi Electric Research Lab,
May 1994.

[20] D. Gennery. Tracking known three-dimensional objects. In Proceedings
of AAAI-82, pages 13{17, 1982.

[21] D. Gennery. Visual tracking of known three-dimensional objects. Int.
J. Computer Vision, 7(3):243{270, 1992.

[22] M. Gleicher and A. Witkin. Through-The-Lens camera control. Com-
puter Graphics, 26(2):331{340, 1992.

[23] D. Hogg. Model-based vision: a program to see a walking person. Image
and Vision Computing, 1(1):5{20, 1983.

BIBLIOGRAPHY 119

[24] R. Holt, A. Netravali, T. Huang, and R. Qian. Determining articu-
lated motion from perspective views: A decomposition approach. In
J. Aggarwal and T. Huang, editors, Proc. of Workshop on Motion of
Non-Rigid and Articulated Objects, pages 126{137, Austin, Texas, 1994.
IEEE Computer Society Press.

[25] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing im-
ages using the hausdor� distance. IEEE Trans. Pattern Analysis and
Machine Intelligence, 15(9):850{863, September 1993.

[26] R. Jasinschi, J. Moura, and et. al. Video compression via constructs.
In Proc. Int. Conf. Acoust., Speech, and Sig. Proc., 1995. Accepted for
publication.

[27] S. B. Kang and K. Ikeuchi. Grasp recognition using the contact web. In
Proc. IEEE/RSJ Int. Conf. on Int. Robots and Sys., Raleigh, NC, 1992.

[28] Micheal Kass, Andy Witkin, and Demitri Terzopoulos. Snakes: Active
contour models. Int. J. Computer Vision, 1(4):321{331, 1987.

[29] S. Kawada, A. Sato, and et. al. Multi-image tracking of human bodies
in motion. In Proc. of National Conf., Inst. of Electronics and Commu-
nication Engineers of Japan, pages 7D{6, Tokyo, Japan, March 1994.
In Japanese.

[30] P. Khosla. Real-time Control and Identi�cation of Direct-Drive Manip-
ulators. PhD thesis, Carnegie Mellon Univ., Dept. of ECE, 1986.

[31] J. Koenderink and A. van Doorn. The singularities of the visual map-
ping. Biological Cybernetics, 24, 1976.

[32] T. Kondo, T. Yamagiwa, and et. al. Measurement of Kansei in human
action based on a robot model. In Proc. of National Conf., Inst. of
Electronics and Communication Engineers of Japan, pages 6D{6, Tokyo,
Japan, March 1994. In Japanese.

[33] J. Lee and T. Kunii. Constraint-based hand animation. In Thalmann
and Thalmann, editors,Models and Techniques in Computer Animation,
pages 110{127. Springer-Verlag, 1993.

[34] X. Li and Y. Bar-Shalom. Stability evaluation and track life of the PDAF
for tracking in clutter. IEEE Trans. Automatic Control, 36(5):588{602,
May 1991.

[35] D. Lowe. Robust model-based motion tracking through the integration
of search and estimation. Int. J. Computer Vision, 8(2):113{122, 1992.

120 BIBLIOGRAPHY

[36] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo. In Seventh Int. Joint Conf. on Arti�cial
Intelligence (IJCAI-81), pages 674{679, Vancouver, B.C., 1981.

[37] R. Mann and E. Antonsson. Gait analysis{ precise, rapid, automatic,
3-d position and orientation kinematics and dynamics. BULLETIN of
the Hospital for Joint Diseases Orthopaedic Institute, XLIII(2):137{146,
1983.

[38] J. McCarthy. An Introduction to Theoretical Kinematics. MIT Press,
1990.

[39] D. Metaxis and D. Terzopoulos. Shape and nonrigid motion estimation
through physics-based synthesis. IEEE Trans. Pattern Analysis and
Machine Intelligence, 15(6):580{591, 1993.

[40] Y. Nakamura. Advanced Robotics: Redundancy and Optimization.
Addison-Wesley, 1991.

[41] M. Nitzberg and D. Mumford. The 2.1-d sketch. In Proc. Third Int.
Conf. on Comp. Vision, Osaka, Japan, 1990.

[42] J. O'Rourke and N. Badler. Model-based image analysis of human mo-
tion using constraint propagation. IEEE Trans. Pattern Analysis and
Machine Intelligence, 2(6):522{536, 1980.

[43] R. P. Paul. Robot Manipulators. MIT Press, 1981.

[44] A. Pentland and B. Horowitz. Recovery of nonrigid motion and
structure. IEEE Trans. Pattern Analysis and Machine Intelligence,
13(7):730{742, 1991.

[45] R. Rashid. Towards a system for the interpretation of moving light
displays. IEEE Trans. Pattern Analysis and Machine Intelligence,
2(6):574{581, 1980.

[46] J. Rehg and T. Kanade. Digiteyes: Vision-based human hand tracking.
Technical Report CMU-CS-TR-93-220, Carnegie Mellon Univ. School of
Comp. Sci., 1993.

[47] J. Rehg and T. Kanade. Digiteyes: Vision-based hand tracking for
human-computer interaction. In J. Aggarwal and T. Huang, editors,
Proc. of Workshop on Motion of Non-Rigid and Articulated Objects,
pages 16{22, Austin, Texas, 1994. IEEE Computer Society Press.

122 BIBLIOGRAPHY

[62] R. Szeliski. Bayesian Modeling of Uncertainty in Low-Level Vision.
Kluwer Academic Pub., Boston, MA, 1989.

[63] R. Szeliski and D. Terzopoulos. Physically-based and probabilistic mod-
eling for computer vision. In B. Vemuri, editor, Proc. SPIE 1570, Ge-
ometric Methods in Computer Vision, pages 140{152, San Diego, CA,
1991.

[64] D. Terzopoulos and R. Szeliski. Tracking with kalman snakes. In
A. Blake and A. Yuille, editors, Active Vision, pages 3{20. MIT Press,
1992.

[65] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable
models: Recovering 3D shape and non-rigid motion. Arti�cial Intelli-
gence, 36(1):91{123, 1988.

[66] D. Thompson, W. Buford, and et. al. A hand biomechanics workstation.
Computer Graphics, 22(4):335{343, 1988.

[67] J. Wang and E. Adelson. Layered representation for motion analysis. In
Proc. IEEE Conf. Comput. Vis. and Pattern Rec., pages 361{366, 1993.

[68] J. Webb and J. Aggarwal. Structure from motion of rigid and jointed
objects. Arti�cial Intelligence, 19:107{130, 1982.

[69] J. Wertz. Spacecraft Attitude Determination and Control. Reidel,
Boston, 1978.

[70] B. Widrow. The \Rubber-Mask" technique| I. Pattern measurement
and analysis. Pattern Recognition, 5:175{197, 1973.

[71] A. Witkin. 1992. Personal communication.

[72] M. Yamamoto and K. Koshikawa. Human motion analysis based on a
robot arm model. In IEEE Conf. Comput. Vis. and Pattern Rec., pages
664{665, 1991. Also see Electrotechnical Laboratory Report 90-46.

[73] A. Yuille. Deformable templates for face recognition. J. of Cognitive
Neuroscience, 3(1):59{70, 1991.

[74] T. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill. A
hand gesture interface device. In Proc. Human Factors in Comp. Sys.
and Graphics Interface (CHI+GI'87), pages 189{192, Toronto, Canada,
1987.

